![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst3 | Structured version Visualization version GIF version |
Description: Two ways to express a constant function. (Contributed by NM, 15-Mar-2007.) |
Ref | Expression |
---|---|
fconst3 | ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstfv 6623 | . 2 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) | |
2 | fnfun 6127 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | fndm 6129 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | eqimss2 3807 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐴 ⊆ dom 𝐹) |
6 | funconstss 6480 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
7 | 2, 5, 6 | syl2anc 573 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
8 | 7 | pm5.32i 564 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
9 | 1, 8 | bitri 264 | 1 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∀wral 3061 ⊆ wss 3723 {csn 4317 ◡ccnv 5249 dom cdm 5250 “ cima 5253 Fun wfun 6024 Fn wfn 6025 ⟶wf 6026 ‘cfv 6030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-fv 6038 |
This theorem is referenced by: fconst4 6625 dnsconst 21403 |
Copyright terms: Public domain | W3C validator |