MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst3 Structured version   Visualization version   GIF version

Theorem fconst3 7210
Description: Two ways to express a constant function. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
fconst3 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))

Proof of Theorem fconst3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fconstfv 7209 . 2 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
2 fnfun 6646 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
3 fndm 6649 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
4 eqimss2 4040 . . . . 5 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
53, 4syl 17 . . . 4 (𝐹 Fn 𝐴𝐴 ⊆ dom 𝐹)
6 funconstss 7053 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
72, 5, 6syl2anc 585 . . 3 (𝐹 Fn 𝐴 → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
87pm5.32i 576 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
91, 8bitri 275 1 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wral 3062  wss 3947  {csn 4627  ccnv 5674  dom cdm 5675  cima 5678  Fun wfun 6534   Fn wfn 6535  wf 6536  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548
This theorem is referenced by:  fconst4  7211  dnsconst  22864
  Copyright terms: Public domain W3C validator