MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst3 Structured version   Visualization version   GIF version

Theorem fconst3 7237
Description: Two ways to express a constant function. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
fconst3 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))

Proof of Theorem fconst3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fconstfv 7236 . 2 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵))
2 fnfun 6673 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
3 fndm 6676 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
4 eqimss2 4056 . . . . 5 (dom 𝐹 = 𝐴𝐴 ⊆ dom 𝐹)
53, 4syl 17 . . . 4 (𝐹 Fn 𝐴𝐴 ⊆ dom 𝐹)
6 funconstss 7080 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
72, 5, 6syl2anc 584 . . 3 (𝐹 Fn 𝐴 → (∀𝑥𝐴 (𝐹𝑥) = 𝐵𝐴 ⊆ (𝐹 “ {𝐵})))
87pm5.32i 574 . 2 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) = 𝐵) ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
91, 8bitri 275 1 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1538  wral 3060  wss 3964  {csn 4632  ccnv 5689  dom cdm 5690  cima 5693  Fun wfun 6560   Fn wfn 6561  wf 6562  cfv 6566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-fv 6574
This theorem is referenced by:  fconst4  7238  dnsconst  23408
  Copyright terms: Public domain W3C validator