![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst3 | Structured version Visualization version GIF version |
Description: Two ways to express a constant function. (Contributed by NM, 15-Mar-2007.) |
Ref | Expression |
---|---|
fconst3 | ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstfv 6848 | . 2 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) | |
2 | fnfun 6330 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | fndm 6332 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | eqimss2 3951 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐴 ⊆ dom 𝐹) |
6 | funconstss 6698 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
7 | 2, 5, 6 | syl2anc 584 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
8 | 7 | pm5.32i 575 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
9 | 1, 8 | bitri 276 | 1 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 = wceq 1525 ∀wral 3107 ⊆ wss 3865 {csn 4478 ◡ccnv 5449 dom cdm 5450 “ cima 5453 Fun wfun 6226 Fn wfn 6227 ⟶wf 6228 ‘cfv 6232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-fv 6240 |
This theorem is referenced by: fconst4 6850 dnsconst 21674 |
Copyright terms: Public domain | W3C validator |