Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fconst3 | Structured version Visualization version GIF version |
Description: Two ways to express a constant function. (Contributed by NM, 15-Mar-2007.) |
Ref | Expression |
---|---|
fconst3 | ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstfv 6966 | . 2 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) | |
2 | fnfun 6434 | . . . 4 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
3 | fndm 6436 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | eqimss2 3949 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → 𝐴 ⊆ dom 𝐹) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐴 ⊆ dom 𝐹) |
6 | funconstss 6817 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) | |
7 | 2, 5, 6 | syl2anc 587 | . . 3 ⊢ (𝐹 Fn 𝐴 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵 ↔ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
8 | 7 | pm5.32i 578 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
9 | 1, 8 | bitri 278 | 1 ⊢ (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ 𝐴 ⊆ (◡𝐹 “ {𝐵}))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1538 ∀wral 3070 ⊆ wss 3858 {csn 4522 ◡ccnv 5523 dom cdm 5524 “ cima 5527 Fun wfun 6329 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 |
This theorem is referenced by: fconst4 6968 dnsconst 22078 |
Copyright terms: Public domain | W3C validator |