Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkr0f | Structured version Visualization version GIF version |
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.) |
Ref | Expression |
---|---|
lkr0f.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkr0f.o | ⊢ 0 = (0g‘𝐷) |
lkr0f.v | ⊢ 𝑉 = (Base‘𝑊) |
lkr0f.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkr0f.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkr0f | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkr0f.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
3 | lkr0f.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lkr0f.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | 1, 2, 3, 4 | lflf 37119 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝐷)) |
6 | 5 | ffnd 6631 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺 Fn 𝑉) |
7 | 6 | adantr 482 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → 𝐺 Fn 𝑉) |
8 | lkr0f.o | . . . . . . 7 ⊢ 0 = (0g‘𝐷) | |
9 | lkr0f.k | . . . . . . 7 ⊢ 𝐾 = (LKer‘𝑊) | |
10 | 1, 8, 4, 9 | lkrval 37144 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
11 | 10 | eqeq1d 2738 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ (◡𝐺 “ { 0 }) = 𝑉)) |
12 | 11 | biimpa 478 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → (◡𝐺 “ { 0 }) = 𝑉) |
13 | 8 | fvexi 6818 | . . . . . 6 ⊢ 0 ∈ V |
14 | 13 | fconst2 7112 | . . . . 5 ⊢ (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 })) |
15 | fconst4 7122 | . . . . 5 ⊢ (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) | |
16 | 14, 15 | bitr3i 277 | . . . 4 ⊢ (𝐺 = (𝑉 × { 0 }) ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
17 | 7, 12, 16 | sylanbrc 584 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → 𝐺 = (𝑉 × { 0 })) |
18 | 17 | ex 414 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 → 𝐺 = (𝑉 × { 0 }))) |
19 | 16 | biimpi 215 | . . . . . 6 ⊢ (𝐺 = (𝑉 × { 0 }) → (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
20 | 19 | adantl 483 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
21 | simpr 486 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 = (𝑉 × { 0 })) | |
22 | eqid 2736 | . . . . . . . . . . 11 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
23 | 1, 8, 3, 22 | lfl0f 37125 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
24 | 23 | adantr 482 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
25 | 21, 24 | eqeltrd 2837 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 ∈ (LFnl‘𝑊)) |
26 | 1, 8, 22, 9 | lkrval 37144 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
27 | 25, 26 | syldan 592 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
28 | 27 | eqeq1d 2738 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ (◡𝐺 “ { 0 }) = 𝑉)) |
29 | ffn 6630 | . . . . . . . . 9 ⊢ (𝐺:𝑉⟶{ 0 } → 𝐺 Fn 𝑉) | |
30 | 14, 29 | sylbir 234 | . . . . . . . 8 ⊢ (𝐺 = (𝑉 × { 0 }) → 𝐺 Fn 𝑉) |
31 | 30 | adantl 483 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 Fn 𝑉) |
32 | 31 | biantrurd 534 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((◡𝐺 “ { 0 }) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉))) |
33 | 28, 32 | bitrd 279 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉))) |
34 | 20, 33 | mpbird 257 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾‘𝐺) = 𝑉) |
35 | 34 | ex 414 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐺 = (𝑉 × { 0 }) → (𝐾‘𝐺) = 𝑉)) |
36 | 35 | adantr 482 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺 = (𝑉 × { 0 }) → (𝐾‘𝐺) = 𝑉)) |
37 | 18, 36 | impbid 211 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {csn 4565 × cxp 5598 ◡ccnv 5599 “ cima 5603 Fn wfn 6453 ⟶wf 6454 ‘cfv 6458 Basecbs 16957 Scalarcsca 17010 0gc0g 17195 LModclmod 20168 LFnlclfn 37113 LKerclk 37141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-plusg 17020 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-mgp 19766 df-ring 19830 df-lmod 20170 df-lfl 37114 df-lkr 37142 |
This theorem is referenced by: lkrscss 37154 eqlkr 37155 lkrshp 37161 lkrshp3 37162 lkrshpor 37163 lfl1dim 37177 lfl1dim2N 37178 lkr0f2 37217 lclkrlem1 39562 lclkrlem2j 39572 lclkr 39589 lclkrs 39595 mapd0 39721 |
Copyright terms: Public domain | W3C validator |