![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkr0f | Structured version Visualization version GIF version |
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.) |
Ref | Expression |
---|---|
lkr0f.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkr0f.o | ⊢ 0 = (0g‘𝐷) |
lkr0f.v | ⊢ 𝑉 = (Base‘𝑊) |
lkr0f.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkr0f.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkr0f | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkr0f.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
3 | lkr0f.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lkr0f.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | 1, 2, 3, 4 | lflf 39019 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝐷)) |
6 | 5 | ffnd 6748 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺 Fn 𝑉) |
7 | 6 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → 𝐺 Fn 𝑉) |
8 | lkr0f.o | . . . . . . 7 ⊢ 0 = (0g‘𝐷) | |
9 | lkr0f.k | . . . . . . 7 ⊢ 𝐾 = (LKer‘𝑊) | |
10 | 1, 8, 4, 9 | lkrval 39044 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
11 | 10 | eqeq1d 2742 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ (◡𝐺 “ { 0 }) = 𝑉)) |
12 | 11 | biimpa 476 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → (◡𝐺 “ { 0 }) = 𝑉) |
13 | 8 | fvexi 6934 | . . . . . 6 ⊢ 0 ∈ V |
14 | 13 | fconst2 7242 | . . . . 5 ⊢ (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 })) |
15 | fconst4 7251 | . . . . 5 ⊢ (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) | |
16 | 14, 15 | bitr3i 277 | . . . 4 ⊢ (𝐺 = (𝑉 × { 0 }) ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
17 | 7, 12, 16 | sylanbrc 582 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → 𝐺 = (𝑉 × { 0 })) |
18 | 17 | ex 412 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 → 𝐺 = (𝑉 × { 0 }))) |
19 | 16 | biimpi 216 | . . . . . 6 ⊢ (𝐺 = (𝑉 × { 0 }) → (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
21 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 = (𝑉 × { 0 })) | |
22 | eqid 2740 | . . . . . . . . . . 11 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
23 | 1, 8, 3, 22 | lfl0f 39025 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
25 | 21, 24 | eqeltrd 2844 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 ∈ (LFnl‘𝑊)) |
26 | 1, 8, 22, 9 | lkrval 39044 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
27 | 25, 26 | syldan 590 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
28 | 27 | eqeq1d 2742 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ (◡𝐺 “ { 0 }) = 𝑉)) |
29 | ffn 6747 | . . . . . . . . 9 ⊢ (𝐺:𝑉⟶{ 0 } → 𝐺 Fn 𝑉) | |
30 | 14, 29 | sylbir 235 | . . . . . . . 8 ⊢ (𝐺 = (𝑉 × { 0 }) → 𝐺 Fn 𝑉) |
31 | 30 | adantl 481 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 Fn 𝑉) |
32 | 31 | biantrurd 532 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((◡𝐺 “ { 0 }) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉))) |
33 | 28, 32 | bitrd 279 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉))) |
34 | 20, 33 | mpbird 257 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾‘𝐺) = 𝑉) |
35 | 34 | ex 412 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐺 = (𝑉 × { 0 }) → (𝐾‘𝐺) = 𝑉)) |
36 | 35 | adantr 480 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺 = (𝑉 × { 0 }) → (𝐾‘𝐺) = 𝑉)) |
37 | 18, 36 | impbid 212 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 × cxp 5698 ◡ccnv 5699 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 Basecbs 17258 Scalarcsca 17314 0gc0g 17499 LModclmod 20880 LFnlclfn 39013 LKerclk 39041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-lmod 20882 df-lfl 39014 df-lkr 39042 |
This theorem is referenced by: lkrscss 39054 eqlkr 39055 lkrshp 39061 lkrshp3 39062 lkrshpor 39063 lfl1dim 39077 lfl1dim2N 39078 lkr0f2 39117 lclkrlem1 41463 lclkrlem2j 41473 lclkr 41490 lclkrs 41496 mapd0 41622 |
Copyright terms: Public domain | W3C validator |