Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkr0f | Structured version Visualization version GIF version |
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.) |
Ref | Expression |
---|---|
lkr0f.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkr0f.o | ⊢ 0 = (0g‘𝐷) |
lkr0f.v | ⊢ 𝑉 = (Base‘𝑊) |
lkr0f.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkr0f.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkr0f | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkr0f.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | eqid 2759 | . . . . . . 7 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
3 | lkr0f.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lkr0f.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | 1, 2, 3, 4 | lflf 36632 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝐷)) |
6 | 5 | ffnd 6500 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺 Fn 𝑉) |
7 | 6 | adantr 485 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → 𝐺 Fn 𝑉) |
8 | lkr0f.o | . . . . . . 7 ⊢ 0 = (0g‘𝐷) | |
9 | lkr0f.k | . . . . . . 7 ⊢ 𝐾 = (LKer‘𝑊) | |
10 | 1, 8, 4, 9 | lkrval 36657 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
11 | 10 | eqeq1d 2761 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ (◡𝐺 “ { 0 }) = 𝑉)) |
12 | 11 | biimpa 481 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → (◡𝐺 “ { 0 }) = 𝑉) |
13 | 8 | fvexi 6673 | . . . . . 6 ⊢ 0 ∈ V |
14 | 13 | fconst2 6959 | . . . . 5 ⊢ (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 })) |
15 | fconst4 6969 | . . . . 5 ⊢ (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) | |
16 | 14, 15 | bitr3i 280 | . . . 4 ⊢ (𝐺 = (𝑉 × { 0 }) ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
17 | 7, 12, 16 | sylanbrc 587 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → 𝐺 = (𝑉 × { 0 })) |
18 | 17 | ex 417 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 → 𝐺 = (𝑉 × { 0 }))) |
19 | 16 | biimpi 219 | . . . . . 6 ⊢ (𝐺 = (𝑉 × { 0 }) → (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
20 | 19 | adantl 486 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
21 | simpr 489 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 = (𝑉 × { 0 })) | |
22 | eqid 2759 | . . . . . . . . . . 11 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
23 | 1, 8, 3, 22 | lfl0f 36638 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
24 | 23 | adantr 485 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
25 | 21, 24 | eqeltrd 2853 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 ∈ (LFnl‘𝑊)) |
26 | 1, 8, 22, 9 | lkrval 36657 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
27 | 25, 26 | syldan 595 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
28 | 27 | eqeq1d 2761 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ (◡𝐺 “ { 0 }) = 𝑉)) |
29 | ffn 6499 | . . . . . . . . 9 ⊢ (𝐺:𝑉⟶{ 0 } → 𝐺 Fn 𝑉) | |
30 | 14, 29 | sylbir 238 | . . . . . . . 8 ⊢ (𝐺 = (𝑉 × { 0 }) → 𝐺 Fn 𝑉) |
31 | 30 | adantl 486 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 Fn 𝑉) |
32 | 31 | biantrurd 537 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((◡𝐺 “ { 0 }) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉))) |
33 | 28, 32 | bitrd 282 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉))) |
34 | 20, 33 | mpbird 260 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾‘𝐺) = 𝑉) |
35 | 34 | ex 417 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐺 = (𝑉 × { 0 }) → (𝐾‘𝐺) = 𝑉)) |
36 | 35 | adantr 485 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺 = (𝑉 × { 0 }) → (𝐾‘𝐺) = 𝑉)) |
37 | 18, 36 | impbid 215 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 {csn 4523 × cxp 5523 ◡ccnv 5524 “ cima 5528 Fn wfn 6331 ⟶wf 6332 ‘cfv 6336 Basecbs 16534 Scalarcsca 16619 0gc0g 16764 LModclmod 19695 LFnlclfn 36626 LKerclk 36654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-plusg 16629 df-0g 16766 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-grp 18165 df-mgp 19301 df-ring 19360 df-lmod 19697 df-lfl 36627 df-lkr 36655 |
This theorem is referenced by: lkrscss 36667 eqlkr 36668 lkrshp 36674 lkrshp3 36675 lkrshpor 36676 lfl1dim 36690 lfl1dim2N 36691 lkr0f2 36730 lclkrlem1 39075 lclkrlem2j 39085 lclkr 39102 lclkrs 39108 mapd0 39234 |
Copyright terms: Public domain | W3C validator |