Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkr0f Structured version   Visualization version   GIF version

Theorem lkr0f 37150
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.)
Hypotheses
Ref Expression
lkr0f.d 𝐷 = (Scalar‘𝑊)
lkr0f.o 0 = (0g𝐷)
lkr0f.v 𝑉 = (Base‘𝑊)
lkr0f.f 𝐹 = (LFnl‘𝑊)
lkr0f.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkr0f ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))

Proof of Theorem lkr0f
StepHypRef Expression
1 lkr0f.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
2 eqid 2736 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3 lkr0f.v . . . . . . 7 𝑉 = (Base‘𝑊)
4 lkr0f.f . . . . . . 7 𝐹 = (LFnl‘𝑊)
51, 2, 3, 4lflf 37119 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
65ffnd 6631 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺 Fn 𝑉)
76adantr 482 . . . 4 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → 𝐺 Fn 𝑉)
8 lkr0f.o . . . . . . 7 0 = (0g𝐷)
9 lkr0f.k . . . . . . 7 𝐾 = (LKer‘𝑊)
101, 8, 4, 9lkrval 37144 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
1110eqeq1d 2738 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 “ { 0 }) = 𝑉))
1211biimpa 478 . . . 4 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → (𝐺 “ { 0 }) = 𝑉)
138fvexi 6818 . . . . . 6 0 ∈ V
1413fconst2 7112 . . . . 5 (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 }))
15 fconst4 7122 . . . . 5 (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
1614, 15bitr3i 277 . . . 4 (𝐺 = (𝑉 × { 0 }) ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
177, 12, 16sylanbrc 584 . . 3 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → 𝐺 = (𝑉 × { 0 }))
1817ex 414 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
1916biimpi 215 . . . . . 6 (𝐺 = (𝑉 × { 0 }) → (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
2019adantl 483 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
21 simpr 486 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 = (𝑉 × { 0 }))
22 eqid 2736 . . . . . . . . . . 11 (LFnl‘𝑊) = (LFnl‘𝑊)
231, 8, 3, 22lfl0f 37125 . . . . . . . . . 10 (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊))
2423adantr 482 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝑉 × { 0 }) ∈ (LFnl‘𝑊))
2521, 24eqeltrd 2837 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 ∈ (LFnl‘𝑊))
261, 8, 22, 9lkrval 37144 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝐾𝐺) = (𝐺 “ { 0 }))
2725, 26syldan 592 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾𝐺) = (𝐺 “ { 0 }))
2827eqeq1d 2738 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 “ { 0 }) = 𝑉))
29 ffn 6630 . . . . . . . . 9 (𝐺:𝑉⟶{ 0 } → 𝐺 Fn 𝑉)
3014, 29sylbir 234 . . . . . . . 8 (𝐺 = (𝑉 × { 0 }) → 𝐺 Fn 𝑉)
3130adantl 483 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 Fn 𝑉)
3231biantrurd 534 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐺 “ { 0 }) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉)))
3328, 32bitrd 279 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉)))
3420, 33mpbird 257 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾𝐺) = 𝑉)
3534ex 414 . . 3 (𝑊 ∈ LMod → (𝐺 = (𝑉 × { 0 }) → (𝐾𝐺) = 𝑉))
3635adantr 482 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺 = (𝑉 × { 0 }) → (𝐾𝐺) = 𝑉))
3718, 36impbid 211 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  {csn 4565   × cxp 5598  ccnv 5599  cima 5603   Fn wfn 6453  wf 6454  cfv 6458  Basecbs 16957  Scalarcsca 17010  0gc0g 17195  LModclmod 20168  LFnlclfn 37113  LKerclk 37141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-map 8648  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-plusg 17020  df-0g 17197  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-grp 18625  df-mgp 19766  df-ring 19830  df-lmod 20170  df-lfl 37114  df-lkr 37142
This theorem is referenced by:  lkrscss  37154  eqlkr  37155  lkrshp  37161  lkrshp3  37162  lkrshpor  37163  lfl1dim  37177  lfl1dim2N  37178  lkr0f2  37217  lclkrlem1  39562  lclkrlem2j  39572  lclkr  39589  lclkrs  39595  mapd0  39721
  Copyright terms: Public domain W3C validator