| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lkr0f | Structured version Visualization version GIF version | ||
| Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.) |
| Ref | Expression |
|---|---|
| lkr0f.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lkr0f.o | ⊢ 0 = (0g‘𝐷) |
| lkr0f.v | ⊢ 𝑉 = (Base‘𝑊) |
| lkr0f.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lkr0f.k | ⊢ 𝐾 = (LKer‘𝑊) |
| Ref | Expression |
|---|---|
| lkr0f | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lkr0f.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 2 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 3 | lkr0f.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lkr0f.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 5 | 1, 2, 3, 4 | lflf 39063 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝐷)) |
| 6 | 5 | ffnd 6692 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺 Fn 𝑉) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → 𝐺 Fn 𝑉) |
| 8 | lkr0f.o | . . . . . . 7 ⊢ 0 = (0g‘𝐷) | |
| 9 | lkr0f.k | . . . . . . 7 ⊢ 𝐾 = (LKer‘𝑊) | |
| 10 | 1, 8, 4, 9 | lkrval 39088 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
| 11 | 10 | eqeq1d 2732 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ (◡𝐺 “ { 0 }) = 𝑉)) |
| 12 | 11 | biimpa 476 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → (◡𝐺 “ { 0 }) = 𝑉) |
| 13 | 8 | fvexi 6875 | . . . . . 6 ⊢ 0 ∈ V |
| 14 | 13 | fconst2 7182 | . . . . 5 ⊢ (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 })) |
| 15 | fconst4 7191 | . . . . 5 ⊢ (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) | |
| 16 | 14, 15 | bitr3i 277 | . . . 4 ⊢ (𝐺 = (𝑉 × { 0 }) ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
| 17 | 7, 12, 16 | sylanbrc 583 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → 𝐺 = (𝑉 × { 0 })) |
| 18 | 17 | ex 412 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 → 𝐺 = (𝑉 × { 0 }))) |
| 19 | 16 | biimpi 216 | . . . . . 6 ⊢ (𝐺 = (𝑉 × { 0 }) → (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
| 20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
| 21 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 = (𝑉 × { 0 })) | |
| 22 | eqid 2730 | . . . . . . . . . . 11 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
| 23 | 1, 8, 3, 22 | lfl0f 39069 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
| 24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
| 25 | 21, 24 | eqeltrd 2829 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 ∈ (LFnl‘𝑊)) |
| 26 | 1, 8, 22, 9 | lkrval 39088 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
| 27 | 25, 26 | syldan 591 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
| 28 | 27 | eqeq1d 2732 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ (◡𝐺 “ { 0 }) = 𝑉)) |
| 29 | ffn 6691 | . . . . . . . . 9 ⊢ (𝐺:𝑉⟶{ 0 } → 𝐺 Fn 𝑉) | |
| 30 | 14, 29 | sylbir 235 | . . . . . . . 8 ⊢ (𝐺 = (𝑉 × { 0 }) → 𝐺 Fn 𝑉) |
| 31 | 30 | adantl 481 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 Fn 𝑉) |
| 32 | 31 | biantrurd 532 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((◡𝐺 “ { 0 }) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉))) |
| 33 | 28, 32 | bitrd 279 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉))) |
| 34 | 20, 33 | mpbird 257 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾‘𝐺) = 𝑉) |
| 35 | 34 | ex 412 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐺 = (𝑉 × { 0 }) → (𝐾‘𝐺) = 𝑉)) |
| 36 | 35 | adantr 480 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺 = (𝑉 × { 0 }) → (𝐾‘𝐺) = 𝑉)) |
| 37 | 18, 36 | impbid 212 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 × cxp 5639 ◡ccnv 5640 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 Basecbs 17186 Scalarcsca 17230 0gc0g 17409 LModclmod 20773 LFnlclfn 39057 LKerclk 39085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-lmod 20775 df-lfl 39058 df-lkr 39086 |
| This theorem is referenced by: lkrscss 39098 eqlkr 39099 lkrshp 39105 lkrshp3 39106 lkrshpor 39107 lfl1dim 39121 lfl1dim2N 39122 lkr0f2 39161 lclkrlem1 41507 lclkrlem2j 41517 lclkr 41534 lclkrs 41540 mapd0 41666 |
| Copyright terms: Public domain | W3C validator |