Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lkr0f | Structured version Visualization version GIF version |
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.) |
Ref | Expression |
---|---|
lkr0f.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lkr0f.o | ⊢ 0 = (0g‘𝐷) |
lkr0f.v | ⊢ 𝑉 = (Base‘𝑊) |
lkr0f.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lkr0f.k | ⊢ 𝐾 = (LKer‘𝑊) |
Ref | Expression |
---|---|
lkr0f | ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lkr0f.d | . . . . . . 7 ⊢ 𝐷 = (Scalar‘𝑊) | |
2 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
3 | lkr0f.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lkr0f.f | . . . . . . 7 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | 1, 2, 3, 4 | lflf 37302 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝐷)) |
6 | 5 | ffnd 6638 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺 Fn 𝑉) |
7 | 6 | adantr 481 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → 𝐺 Fn 𝑉) |
8 | lkr0f.o | . . . . . . 7 ⊢ 0 = (0g‘𝐷) | |
9 | lkr0f.k | . . . . . . 7 ⊢ 𝐾 = (LKer‘𝑊) | |
10 | 1, 8, 4, 9 | lkrval 37327 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
11 | 10 | eqeq1d 2738 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ (◡𝐺 “ { 0 }) = 𝑉)) |
12 | 11 | biimpa 477 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → (◡𝐺 “ { 0 }) = 𝑉) |
13 | 8 | fvexi 6825 | . . . . . 6 ⊢ 0 ∈ V |
14 | 13 | fconst2 7119 | . . . . 5 ⊢ (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 })) |
15 | fconst4 7129 | . . . . 5 ⊢ (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) | |
16 | 14, 15 | bitr3i 276 | . . . 4 ⊢ (𝐺 = (𝑉 × { 0 }) ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
17 | 7, 12, 16 | sylanbrc 583 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) ∧ (𝐾‘𝐺) = 𝑉) → 𝐺 = (𝑉 × { 0 })) |
18 | 17 | ex 413 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 → 𝐺 = (𝑉 × { 0 }))) |
19 | 16 | biimpi 215 | . . . . . 6 ⊢ (𝐺 = (𝑉 × { 0 }) → (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
20 | 19 | adantl 482 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉)) |
21 | simpr 485 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 = (𝑉 × { 0 })) | |
22 | eqid 2736 | . . . . . . . . . . 11 ⊢ (LFnl‘𝑊) = (LFnl‘𝑊) | |
23 | 1, 8, 3, 22 | lfl0f 37308 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
24 | 23 | adantr 481 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝑉 × { 0 }) ∈ (LFnl‘𝑊)) |
25 | 21, 24 | eqeltrd 2837 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 ∈ (LFnl‘𝑊)) |
26 | 1, 8, 22, 9 | lkrval 37327 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
27 | 25, 26 | syldan 591 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾‘𝐺) = (◡𝐺 “ { 0 })) |
28 | 27 | eqeq1d 2738 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ (◡𝐺 “ { 0 }) = 𝑉)) |
29 | ffn 6637 | . . . . . . . . 9 ⊢ (𝐺:𝑉⟶{ 0 } → 𝐺 Fn 𝑉) | |
30 | 14, 29 | sylbir 234 | . . . . . . . 8 ⊢ (𝐺 = (𝑉 × { 0 }) → 𝐺 Fn 𝑉) |
31 | 30 | adantl 482 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 Fn 𝑉) |
32 | 31 | biantrurd 533 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((◡𝐺 “ { 0 }) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉))) |
33 | 28, 32 | bitrd 278 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (◡𝐺 “ { 0 }) = 𝑉))) |
34 | 20, 33 | mpbird 256 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾‘𝐺) = 𝑉) |
35 | 34 | ex 413 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐺 = (𝑉 × { 0 }) → (𝐾‘𝐺) = 𝑉)) |
36 | 35 | adantr 481 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐺 = (𝑉 × { 0 }) → (𝐾‘𝐺) = 𝑉)) |
37 | 18, 36 | impbid 211 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {csn 4570 × cxp 5605 ◡ccnv 5606 “ cima 5610 Fn wfn 6460 ⟶wf 6461 ‘cfv 6465 Basecbs 16986 Scalarcsca 17039 0gc0g 17224 LModclmod 20203 LFnlclfn 37296 LKerclk 37324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-plusg 17049 df-0g 17226 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-grp 18653 df-mgp 19793 df-ring 19857 df-lmod 20205 df-lfl 37297 df-lkr 37325 |
This theorem is referenced by: lkrscss 37337 eqlkr 37338 lkrshp 37344 lkrshp3 37345 lkrshpor 37346 lfl1dim 37360 lfl1dim2N 37361 lkr0f2 37400 lclkrlem1 39746 lclkrlem2j 39756 lclkr 39773 lclkrs 39779 mapd0 39905 |
Copyright terms: Public domain | W3C validator |