Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkr0f Structured version   Visualization version   GIF version

Theorem lkr0f 39266
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 17-Apr-2014.)
Hypotheses
Ref Expression
lkr0f.d 𝐷 = (Scalar‘𝑊)
lkr0f.o 0 = (0g𝐷)
lkr0f.v 𝑉 = (Base‘𝑊)
lkr0f.f 𝐹 = (LFnl‘𝑊)
lkr0f.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkr0f ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))

Proof of Theorem lkr0f
StepHypRef Expression
1 lkr0f.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
2 eqid 2733 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3 lkr0f.v . . . . . . 7 𝑉 = (Base‘𝑊)
4 lkr0f.f . . . . . . 7 𝐹 = (LFnl‘𝑊)
51, 2, 3, 4lflf 39235 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝐷))
65ffnd 6660 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺 Fn 𝑉)
76adantr 480 . . . 4 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → 𝐺 Fn 𝑉)
8 lkr0f.o . . . . . . 7 0 = (0g𝐷)
9 lkr0f.k . . . . . . 7 𝐾 = (LKer‘𝑊)
101, 8, 4, 9lkrval 39260 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) = (𝐺 “ { 0 }))
1110eqeq1d 2735 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 “ { 0 }) = 𝑉))
1211biimpa 476 . . . 4 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → (𝐺 “ { 0 }) = 𝑉)
138fvexi 6845 . . . . . 6 0 ∈ V
1413fconst2 7148 . . . . 5 (𝐺:𝑉⟶{ 0 } ↔ 𝐺 = (𝑉 × { 0 }))
15 fconst4 7157 . . . . 5 (𝐺:𝑉⟶{ 0 } ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
1614, 15bitr3i 277 . . . 4 (𝐺 = (𝑉 × { 0 }) ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
177, 12, 16sylanbrc 583 . . 3 (((𝑊 ∈ LMod ∧ 𝐺𝐹) ∧ (𝐾𝐺) = 𝑉) → 𝐺 = (𝑉 × { 0 }))
1817ex 412 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
1916biimpi 216 . . . . . 6 (𝐺 = (𝑉 × { 0 }) → (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
2019adantl 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉))
21 simpr 484 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 = (𝑉 × { 0 }))
22 eqid 2733 . . . . . . . . . . 11 (LFnl‘𝑊) = (LFnl‘𝑊)
231, 8, 3, 22lfl0f 39241 . . . . . . . . . 10 (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ (LFnl‘𝑊))
2423adantr 480 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝑉 × { 0 }) ∈ (LFnl‘𝑊))
2521, 24eqeltrd 2833 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 ∈ (LFnl‘𝑊))
261, 8, 22, 9lkrval 39260 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺 ∈ (LFnl‘𝑊)) → (𝐾𝐺) = (𝐺 “ { 0 }))
2725, 26syldan 591 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾𝐺) = (𝐺 “ { 0 }))
2827eqeq1d 2735 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 “ { 0 }) = 𝑉))
29 ffn 6659 . . . . . . . . 9 (𝐺:𝑉⟶{ 0 } → 𝐺 Fn 𝑉)
3014, 29sylbir 235 . . . . . . . 8 (𝐺 = (𝑉 × { 0 }) → 𝐺 Fn 𝑉)
3130adantl 481 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → 𝐺 Fn 𝑉)
3231biantrurd 532 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐺 “ { 0 }) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉)))
3328, 32bitrd 279 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉 ↔ (𝐺 Fn 𝑉 ∧ (𝐺 “ { 0 }) = 𝑉)))
3420, 33mpbird 257 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺 = (𝑉 × { 0 })) → (𝐾𝐺) = 𝑉)
3534ex 412 . . 3 (𝑊 ∈ LMod → (𝐺 = (𝑉 × { 0 }) → (𝐾𝐺) = 𝑉))
3635adantr 480 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺 = (𝑉 × { 0 }) → (𝐾𝐺) = 𝑉))
3718, 36impbid 212 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {csn 4577   × cxp 5619  ccnv 5620  cima 5624   Fn wfn 6484  wf 6485  cfv 6489  Basecbs 17127  Scalarcsca 17171  0gc0g 17350  LModclmod 20802  LFnlclfn 39229  LKerclk 39257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-lmod 20804  df-lfl 39230  df-lkr 39258
This theorem is referenced by:  lkrscss  39270  eqlkr  39271  lkrshp  39277  lkrshp3  39278  lkrshpor  39279  lfl1dim  39293  lfl1dim2N  39294  lkr0f2  39333  lclkrlem1  41678  lclkrlem2j  41688  lclkr  41705  lclkrs  41711  mapd0  41837
  Copyright terms: Public domain W3C validator