![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tdeglem3 | Structured version Visualization version GIF version |
Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
tdeglem.a | β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
tdeglem.h | β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) |
Ref | Expression |
---|---|
tdeglem3 | β’ ((π β π΄ β§ π β π΄) β (π»β(π βf + π)) = ((π»βπ) + (π»βπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 20947 | . . 3 β’ β = (Baseββfld) | |
2 | cnfld0 20968 | . . 3 β’ 0 = (0gββfld) | |
3 | cnfldadd 20948 | . . 3 β’ + = (+gββfld) | |
4 | cnring 20966 | . . . 4 β’ βfld β Ring | |
5 | ringcmn 20098 | . . . 4 β’ (βfld β Ring β βfld β CMnd) | |
6 | 4, 5 | mp1i 13 | . . 3 β’ ((π β π΄ β§ π β π΄) β βfld β CMnd) |
7 | simpl 483 | . . . 4 β’ ((π β π΄ β§ π β π΄) β π β π΄) | |
8 | tdeglem.a | . . . . . . . 8 β’ π΄ = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
9 | 8 | psrbagf 21470 | . . . . . . 7 β’ (π β π΄ β π:πΌβΆβ0) |
10 | nn0sscn 12476 | . . . . . . 7 β’ β0 β β | |
11 | fss 6734 | . . . . . . 7 β’ ((π:πΌβΆβ0 β§ β0 β β) β π:πΌβΆβ) | |
12 | 9, 10, 11 | sylancl 586 | . . . . . 6 β’ (π β π΄ β π:πΌβΆβ) |
13 | 12 | adantr 481 | . . . . 5 β’ ((π β π΄ β§ π β π΄) β π:πΌβΆβ) |
14 | 13 | ffnd 6718 | . . . 4 β’ ((π β π΄ β§ π β π΄) β π Fn πΌ) |
15 | 7, 14 | fndmexd 7896 | . . 3 β’ ((π β π΄ β§ π β π΄) β πΌ β V) |
16 | 8 | psrbagf 21470 | . . . . 5 β’ (π β π΄ β π:πΌβΆβ0) |
17 | fss 6734 | . . . . 5 β’ ((π:πΌβΆβ0 β§ β0 β β) β π:πΌβΆβ) | |
18 | 16, 10, 17 | sylancl 586 | . . . 4 β’ (π β π΄ β π:πΌβΆβ) |
19 | 18 | adantl 482 | . . 3 β’ ((π β π΄ β§ π β π΄) β π:πΌβΆβ) |
20 | 8 | psrbagfsupp 21472 | . . . 4 β’ (π β π΄ β π finSupp 0) |
21 | 20 | adantr 481 | . . 3 β’ ((π β π΄ β§ π β π΄) β π finSupp 0) |
22 | 8 | psrbagfsupp 21472 | . . . 4 β’ (π β π΄ β π finSupp 0) |
23 | 22 | adantl 482 | . . 3 β’ ((π β π΄ β§ π β π΄) β π finSupp 0) |
24 | 1, 2, 3, 6, 15, 13, 19, 21, 23 | gsumadd 19790 | . 2 β’ ((π β π΄ β§ π β π΄) β (βfld Ξ£g (π βf + π)) = ((βfld Ξ£g π) + (βfld Ξ£g π))) |
25 | 8 | psrbagaddcl 21480 | . . 3 β’ ((π β π΄ β§ π β π΄) β (π βf + π) β π΄) |
26 | oveq2 7416 | . . . 4 β’ (β = (π βf + π) β (βfld Ξ£g β) = (βfld Ξ£g (π βf + π))) | |
27 | tdeglem.h | . . . 4 β’ π» = (β β π΄ β¦ (βfld Ξ£g β)) | |
28 | ovex 7441 | . . . 4 β’ (βfld Ξ£g (π βf + π)) β V | |
29 | 26, 27, 28 | fvmpt 6998 | . . 3 β’ ((π βf + π) β π΄ β (π»β(π βf + π)) = (βfld Ξ£g (π βf + π))) |
30 | 25, 29 | syl 17 | . 2 β’ ((π β π΄ β§ π β π΄) β (π»β(π βf + π)) = (βfld Ξ£g (π βf + π))) |
31 | oveq2 7416 | . . . 4 β’ (β = π β (βfld Ξ£g β) = (βfld Ξ£g π)) | |
32 | ovex 7441 | . . . 4 β’ (βfld Ξ£g π) β V | |
33 | 31, 27, 32 | fvmpt 6998 | . . 3 β’ (π β π΄ β (π»βπ) = (βfld Ξ£g π)) |
34 | oveq2 7416 | . . . 4 β’ (β = π β (βfld Ξ£g β) = (βfld Ξ£g π)) | |
35 | ovex 7441 | . . . 4 β’ (βfld Ξ£g π) β V | |
36 | 34, 27, 35 | fvmpt 6998 | . . 3 β’ (π β π΄ β (π»βπ) = (βfld Ξ£g π)) |
37 | 33, 36 | oveqan12d 7427 | . 2 β’ ((π β π΄ β§ π β π΄) β ((π»βπ) + (π»βπ)) = ((βfld Ξ£g π) + (βfld Ξ£g π))) |
38 | 24, 30, 37 | 3eqtr4d 2782 | 1 β’ ((π β π΄ β§ π β π΄) β (π»β(π βf + π)) = ((π»βπ) + (π»βπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β wss 3948 class class class wbr 5148 β¦ cmpt 5231 β‘ccnv 5675 β cima 5679 βΆwf 6539 βcfv 6543 (class class class)co 7408 βf cof 7667 βm cmap 8819 Fincfn 8938 finSupp cfsupp 9360 βcc 11107 0cc0 11109 + caddc 11112 βcn 12211 β0cn0 12471 Ξ£g cgsu 17385 CMndccmn 19647 Ringcrg 20055 βfldccnfld 20943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-gsum 17387 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-grp 18821 df-minusg 18822 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-cnfld 20944 |
This theorem is referenced by: mdegmullem 25595 |
Copyright terms: Public domain | W3C validator |