MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem3 Structured version   Visualization version   GIF version

Theorem tdeglem3 25422
Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem3 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = ((𝐻𝑋) + (𝐻𝑌)))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑋,𝑚   ,𝑌,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)

Proof of Theorem tdeglem3
StepHypRef Expression
1 cnfldbas 20800 . . 3 ℂ = (Base‘ℂfld)
2 cnfld0 20821 . . 3 0 = (0g‘ℂfld)
3 cnfldadd 20801 . . 3 + = (+g‘ℂfld)
4 cnring 20819 . . . 4 fld ∈ Ring
5 ringcmn 20003 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
64, 5mp1i 13 . . 3 ((𝑋𝐴𝑌𝐴) → ℂfld ∈ CMnd)
7 simpl 483 . . . 4 ((𝑋𝐴𝑌𝐴) → 𝑋𝐴)
8 tdeglem.a . . . . . . . 8 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 21320 . . . . . . 7 (𝑋𝐴𝑋:𝐼⟶ℕ0)
10 nn0sscn 12418 . . . . . . 7 0 ⊆ ℂ
11 fss 6685 . . . . . . 7 ((𝑋:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑋:𝐼⟶ℂ)
129, 10, 11sylancl 586 . . . . . 6 (𝑋𝐴𝑋:𝐼⟶ℂ)
1312adantr 481 . . . . 5 ((𝑋𝐴𝑌𝐴) → 𝑋:𝐼⟶ℂ)
1413ffnd 6669 . . . 4 ((𝑋𝐴𝑌𝐴) → 𝑋 Fn 𝐼)
157, 14fndmexd 7843 . . 3 ((𝑋𝐴𝑌𝐴) → 𝐼 ∈ V)
168psrbagf 21320 . . . . 5 (𝑌𝐴𝑌:𝐼⟶ℕ0)
17 fss 6685 . . . . 5 ((𝑌:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑌:𝐼⟶ℂ)
1816, 10, 17sylancl 586 . . . 4 (𝑌𝐴𝑌:𝐼⟶ℂ)
1918adantl 482 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑌:𝐼⟶ℂ)
208psrbagfsupp 21322 . . . 4 (𝑋𝐴𝑋 finSupp 0)
2120adantr 481 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑋 finSupp 0)
228psrbagfsupp 21322 . . . 4 (𝑌𝐴𝑌 finSupp 0)
2322adantl 482 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑌 finSupp 0)
241, 2, 3, 6, 15, 13, 19, 21, 23gsumadd 19700 . 2 ((𝑋𝐴𝑌𝐴) → (ℂfld Σg (𝑋f + 𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌)))
258psrbagaddcl 21330 . . 3 ((𝑋𝐴𝑌𝐴) → (𝑋f + 𝑌) ∈ 𝐴)
26 oveq2 7365 . . . 4 ( = (𝑋f + 𝑌) → (ℂfld Σg ) = (ℂfld Σg (𝑋f + 𝑌)))
27 tdeglem.h . . . 4 𝐻 = (𝐴 ↦ (ℂfld Σg ))
28 ovex 7390 . . . 4 (ℂfld Σg (𝑋f + 𝑌)) ∈ V
2926, 27, 28fvmpt 6948 . . 3 ((𝑋f + 𝑌) ∈ 𝐴 → (𝐻‘(𝑋f + 𝑌)) = (ℂfld Σg (𝑋f + 𝑌)))
3025, 29syl 17 . 2 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = (ℂfld Σg (𝑋f + 𝑌)))
31 oveq2 7365 . . . 4 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
32 ovex 7390 . . . 4 (ℂfld Σg 𝑋) ∈ V
3331, 27, 32fvmpt 6948 . . 3 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
34 oveq2 7365 . . . 4 ( = 𝑌 → (ℂfld Σg ) = (ℂfld Σg 𝑌))
35 ovex 7390 . . . 4 (ℂfld Σg 𝑌) ∈ V
3634, 27, 35fvmpt 6948 . . 3 (𝑌𝐴 → (𝐻𝑌) = (ℂfld Σg 𝑌))
3733, 36oveqan12d 7376 . 2 ((𝑋𝐴𝑌𝐴) → ((𝐻𝑋) + (𝐻𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌)))
3824, 30, 373eqtr4d 2786 1 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = ((𝐻𝑋) + (𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {crab 3407  Vcvv 3445  wss 3910   class class class wbr 5105  cmpt 5188  ccnv 5632  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  m cmap 8765  Fincfn 8883   finSupp cfsupp 9305  cc 11049  0cc0 11051   + caddc 11054  cn 12153  0cn0 12413   Σg cgsu 17322  CMndccmn 19562  Ringcrg 19964  fldccnfld 20796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-cnfld 20797
This theorem is referenced by:  mdegmullem  25443
  Copyright terms: Public domain W3C validator