MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem3 Structured version   Visualization version   GIF version

Theorem tdeglem3 25964
Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem3 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = ((𝐻𝑋) + (𝐻𝑌)))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑋,𝑚   ,𝑌,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)

Proof of Theorem tdeglem3
StepHypRef Expression
1 cnfldbas 21268 . . 3 ℂ = (Base‘ℂfld)
2 cnfld0 21304 . . 3 0 = (0g‘ℂfld)
3 cnfldadd 21270 . . 3 + = (+g‘ℂfld)
4 cnring 21302 . . . 4 fld ∈ Ring
5 ringcmn 20191 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
64, 5mp1i 13 . . 3 ((𝑋𝐴𝑌𝐴) → ℂfld ∈ CMnd)
7 simpl 482 . . . 4 ((𝑋𝐴𝑌𝐴) → 𝑋𝐴)
8 tdeglem.a . . . . . . . 8 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 21827 . . . . . . 7 (𝑋𝐴𝑋:𝐼⟶ℕ0)
10 nn0sscn 12447 . . . . . . 7 0 ⊆ ℂ
11 fss 6704 . . . . . . 7 ((𝑋:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑋:𝐼⟶ℂ)
129, 10, 11sylancl 586 . . . . . 6 (𝑋𝐴𝑋:𝐼⟶ℂ)
1312adantr 480 . . . . 5 ((𝑋𝐴𝑌𝐴) → 𝑋:𝐼⟶ℂ)
1413ffnd 6689 . . . 4 ((𝑋𝐴𝑌𝐴) → 𝑋 Fn 𝐼)
157, 14fndmexd 7880 . . 3 ((𝑋𝐴𝑌𝐴) → 𝐼 ∈ V)
168psrbagf 21827 . . . . 5 (𝑌𝐴𝑌:𝐼⟶ℕ0)
17 fss 6704 . . . . 5 ((𝑌:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑌:𝐼⟶ℂ)
1816, 10, 17sylancl 586 . . . 4 (𝑌𝐴𝑌:𝐼⟶ℂ)
1918adantl 481 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑌:𝐼⟶ℂ)
208psrbagfsupp 21828 . . . 4 (𝑋𝐴𝑋 finSupp 0)
2120adantr 480 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑋 finSupp 0)
228psrbagfsupp 21828 . . . 4 (𝑌𝐴𝑌 finSupp 0)
2322adantl 481 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑌 finSupp 0)
241, 2, 3, 6, 15, 13, 19, 21, 23gsumadd 19853 . 2 ((𝑋𝐴𝑌𝐴) → (ℂfld Σg (𝑋f + 𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌)))
258psrbagaddcl 21833 . . 3 ((𝑋𝐴𝑌𝐴) → (𝑋f + 𝑌) ∈ 𝐴)
26 oveq2 7395 . . . 4 ( = (𝑋f + 𝑌) → (ℂfld Σg ) = (ℂfld Σg (𝑋f + 𝑌)))
27 tdeglem.h . . . 4 𝐻 = (𝐴 ↦ (ℂfld Σg ))
28 ovex 7420 . . . 4 (ℂfld Σg (𝑋f + 𝑌)) ∈ V
2926, 27, 28fvmpt 6968 . . 3 ((𝑋f + 𝑌) ∈ 𝐴 → (𝐻‘(𝑋f + 𝑌)) = (ℂfld Σg (𝑋f + 𝑌)))
3025, 29syl 17 . 2 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = (ℂfld Σg (𝑋f + 𝑌)))
31 oveq2 7395 . . . 4 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
32 ovex 7420 . . . 4 (ℂfld Σg 𝑋) ∈ V
3331, 27, 32fvmpt 6968 . . 3 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
34 oveq2 7395 . . . 4 ( = 𝑌 → (ℂfld Σg ) = (ℂfld Σg 𝑌))
35 ovex 7420 . . . 4 (ℂfld Σg 𝑌) ∈ V
3634, 27, 35fvmpt 6968 . . 3 (𝑌𝐴 → (𝐻𝑌) = (ℂfld Σg 𝑌))
3733, 36oveqan12d 7406 . 2 ((𝑋𝐴𝑌𝐴) → ((𝐻𝑋) + (𝐻𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌)))
3824, 30, 373eqtr4d 2774 1 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = ((𝐻𝑋) + (𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  ccnv 5637  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  cc 11066  0cc0 11068   + caddc 11071  cn 12186  0cn0 12442   Σg cgsu 17403  CMndccmn 19710  Ringcrg 20142  fldccnfld 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-cring 20145  df-cnfld 21265
This theorem is referenced by:  mdegmullem  25983
  Copyright terms: Public domain W3C validator