MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem3 Structured version   Visualization version   GIF version

Theorem tdeglem3 25445
Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {π‘š ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘š β€œ β„•) ∈ Fin}
tdeglem.h 𝐻 = (β„Ž ∈ 𝐴 ↦ (β„‚fld Ξ£g β„Ž))
Assertion
Ref Expression
tdeglem3 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (π»β€˜(𝑋 ∘f + π‘Œ)) = ((π»β€˜π‘‹) + (π»β€˜π‘Œ)))
Distinct variable groups:   𝐴,β„Ž   β„Ž,𝐼,π‘š   β„Ž,𝑋,π‘š   β„Ž,π‘Œ,π‘š
Allowed substitution hints:   𝐴(π‘š)   𝐻(β„Ž,π‘š)

Proof of Theorem tdeglem3
StepHypRef Expression
1 cnfldbas 20823 . . 3 β„‚ = (Baseβ€˜β„‚fld)
2 cnfld0 20844 . . 3 0 = (0gβ€˜β„‚fld)
3 cnfldadd 20824 . . 3 + = (+gβ€˜β„‚fld)
4 cnring 20842 . . . 4 β„‚fld ∈ Ring
5 ringcmn 20011 . . . 4 (β„‚fld ∈ Ring β†’ β„‚fld ∈ CMnd)
64, 5mp1i 13 . . 3 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ β„‚fld ∈ CMnd)
7 simpl 484 . . . 4 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ 𝑋 ∈ 𝐴)
8 tdeglem.a . . . . . . . 8 𝐴 = {π‘š ∈ (β„•0 ↑m 𝐼) ∣ (β—‘π‘š β€œ β„•) ∈ Fin}
98psrbagf 21343 . . . . . . 7 (𝑋 ∈ 𝐴 β†’ 𝑋:πΌβŸΆβ„•0)
10 nn0sscn 12426 . . . . . . 7 β„•0 βŠ† β„‚
11 fss 6689 . . . . . . 7 ((𝑋:πΌβŸΆβ„•0 ∧ β„•0 βŠ† β„‚) β†’ 𝑋:πΌβŸΆβ„‚)
129, 10, 11sylancl 587 . . . . . 6 (𝑋 ∈ 𝐴 β†’ 𝑋:πΌβŸΆβ„‚)
1312adantr 482 . . . . 5 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ 𝑋:πΌβŸΆβ„‚)
1413ffnd 6673 . . . 4 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ 𝑋 Fn 𝐼)
157, 14fndmexd 7847 . . 3 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ 𝐼 ∈ V)
168psrbagf 21343 . . . . 5 (π‘Œ ∈ 𝐴 β†’ π‘Œ:πΌβŸΆβ„•0)
17 fss 6689 . . . . 5 ((π‘Œ:πΌβŸΆβ„•0 ∧ β„•0 βŠ† β„‚) β†’ π‘Œ:πΌβŸΆβ„‚)
1816, 10, 17sylancl 587 . . . 4 (π‘Œ ∈ 𝐴 β†’ π‘Œ:πΌβŸΆβ„‚)
1918adantl 483 . . 3 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ π‘Œ:πΌβŸΆβ„‚)
208psrbagfsupp 21345 . . . 4 (𝑋 ∈ 𝐴 β†’ 𝑋 finSupp 0)
2120adantr 482 . . 3 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ 𝑋 finSupp 0)
228psrbagfsupp 21345 . . . 4 (π‘Œ ∈ 𝐴 β†’ π‘Œ finSupp 0)
2322adantl 483 . . 3 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ π‘Œ finSupp 0)
241, 2, 3, 6, 15, 13, 19, 21, 23gsumadd 19708 . 2 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (β„‚fld Ξ£g (𝑋 ∘f + π‘Œ)) = ((β„‚fld Ξ£g 𝑋) + (β„‚fld Ξ£g π‘Œ)))
258psrbagaddcl 21353 . . 3 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (𝑋 ∘f + π‘Œ) ∈ 𝐴)
26 oveq2 7369 . . . 4 (β„Ž = (𝑋 ∘f + π‘Œ) β†’ (β„‚fld Ξ£g β„Ž) = (β„‚fld Ξ£g (𝑋 ∘f + π‘Œ)))
27 tdeglem.h . . . 4 𝐻 = (β„Ž ∈ 𝐴 ↦ (β„‚fld Ξ£g β„Ž))
28 ovex 7394 . . . 4 (β„‚fld Ξ£g (𝑋 ∘f + π‘Œ)) ∈ V
2926, 27, 28fvmpt 6952 . . 3 ((𝑋 ∘f + π‘Œ) ∈ 𝐴 β†’ (π»β€˜(𝑋 ∘f + π‘Œ)) = (β„‚fld Ξ£g (𝑋 ∘f + π‘Œ)))
3025, 29syl 17 . 2 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (π»β€˜(𝑋 ∘f + π‘Œ)) = (β„‚fld Ξ£g (𝑋 ∘f + π‘Œ)))
31 oveq2 7369 . . . 4 (β„Ž = 𝑋 β†’ (β„‚fld Ξ£g β„Ž) = (β„‚fld Ξ£g 𝑋))
32 ovex 7394 . . . 4 (β„‚fld Ξ£g 𝑋) ∈ V
3331, 27, 32fvmpt 6952 . . 3 (𝑋 ∈ 𝐴 β†’ (π»β€˜π‘‹) = (β„‚fld Ξ£g 𝑋))
34 oveq2 7369 . . . 4 (β„Ž = π‘Œ β†’ (β„‚fld Ξ£g β„Ž) = (β„‚fld Ξ£g π‘Œ))
35 ovex 7394 . . . 4 (β„‚fld Ξ£g π‘Œ) ∈ V
3634, 27, 35fvmpt 6952 . . 3 (π‘Œ ∈ 𝐴 β†’ (π»β€˜π‘Œ) = (β„‚fld Ξ£g π‘Œ))
3733, 36oveqan12d 7380 . 2 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ ((π»β€˜π‘‹) + (π»β€˜π‘Œ)) = ((β„‚fld Ξ£g 𝑋) + (β„‚fld Ξ£g π‘Œ)))
3824, 30, 373eqtr4d 2783 1 ((𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (π»β€˜(𝑋 ∘f + π‘Œ)) = ((π»β€˜π‘‹) + (π»β€˜π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  {crab 3406  Vcvv 3447   βŠ† wss 3914   class class class wbr 5109   ↦ cmpt 5192  β—‘ccnv 5636   β€œ cima 5640  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361   ∘f cof 7619   ↑m cmap 8771  Fincfn 8889   finSupp cfsupp 9311  β„‚cc 11057  0cc0 11059   + caddc 11062  β„•cn 12161  β„•0cn0 12421   Ξ£g cgsu 17330  CMndccmn 19570  Ringcrg 19972  β„‚fldccnfld 20819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-addf 11138  ax-mulf 11139
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-oi 9454  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-dec 12627  df-uz 12772  df-fz 13434  df-fzo 13577  df-seq 13916  df-hash 14240  df-struct 17027  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-ress 17121  df-plusg 17154  df-mulr 17155  df-starv 17156  df-tset 17160  df-ple 17161  df-ds 17163  df-unif 17164  df-0g 17331  df-gsum 17332  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-submnd 18610  df-grp 18759  df-minusg 18760  df-cntz 19105  df-cmn 19572  df-abl 19573  df-mgp 19905  df-ur 19922  df-ring 19974  df-cring 19975  df-cnfld 20820
This theorem is referenced by:  mdegmullem  25466
  Copyright terms: Public domain W3C validator