| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tdeglem3 | Structured version Visualization version GIF version | ||
| Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| tdeglem.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
| tdeglem.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
| Ref | Expression |
|---|---|
| tdeglem3 | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21275 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | cnfld0 21311 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
| 3 | cnfldadd 21277 | . . 3 ⊢ + = (+g‘ℂfld) | |
| 4 | cnring 21309 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 5 | ringcmn 20198 | . . . 4 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
| 6 | 4, 5 | mp1i 13 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ℂfld ∈ CMnd) |
| 7 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
| 8 | tdeglem.a | . . . . . . . 8 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
| 9 | 8 | psrbagf 21834 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐴 → 𝑋:𝐼⟶ℕ0) |
| 10 | nn0sscn 12454 | . . . . . . 7 ⊢ ℕ0 ⊆ ℂ | |
| 11 | fss 6707 | . . . . . . 7 ⊢ ((𝑋:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑋:𝐼⟶ℂ) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → 𝑋:𝐼⟶ℂ) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋:𝐼⟶ℂ) |
| 14 | 13 | ffnd 6692 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 Fn 𝐼) |
| 15 | 7, 14 | fndmexd 7883 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝐼 ∈ V) |
| 16 | 8 | psrbagf 21834 | . . . . 5 ⊢ (𝑌 ∈ 𝐴 → 𝑌:𝐼⟶ℕ0) |
| 17 | fss 6707 | . . . . 5 ⊢ ((𝑌:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑌:𝐼⟶ℂ) | |
| 18 | 16, 10, 17 | sylancl 586 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → 𝑌:𝐼⟶ℂ) |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌:𝐼⟶ℂ) |
| 20 | 8 | psrbagfsupp 21835 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 finSupp 0) |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 finSupp 0) |
| 22 | 8 | psrbagfsupp 21835 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → 𝑌 finSupp 0) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌 finSupp 0) |
| 24 | 1, 2, 3, 6, 15, 13, 19, 21, 23 | gsumadd 19860 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (ℂfld Σg (𝑋 ∘f + 𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌))) |
| 25 | 8 | psrbagaddcl 21840 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∘f + 𝑌) ∈ 𝐴) |
| 26 | oveq2 7398 | . . . 4 ⊢ (ℎ = (𝑋 ∘f + 𝑌) → (ℂfld Σg ℎ) = (ℂfld Σg (𝑋 ∘f + 𝑌))) | |
| 27 | tdeglem.h | . . . 4 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
| 28 | ovex 7423 | . . . 4 ⊢ (ℂfld Σg (𝑋 ∘f + 𝑌)) ∈ V | |
| 29 | 26, 27, 28 | fvmpt 6971 | . . 3 ⊢ ((𝑋 ∘f + 𝑌) ∈ 𝐴 → (𝐻‘(𝑋 ∘f + 𝑌)) = (ℂfld Σg (𝑋 ∘f + 𝑌))) |
| 30 | 25, 29 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = (ℂfld Σg (𝑋 ∘f + 𝑌))) |
| 31 | oveq2 7398 | . . . 4 ⊢ (ℎ = 𝑋 → (ℂfld Σg ℎ) = (ℂfld Σg 𝑋)) | |
| 32 | ovex 7423 | . . . 4 ⊢ (ℂfld Σg 𝑋) ∈ V | |
| 33 | 31, 27, 32 | fvmpt 6971 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝐻‘𝑋) = (ℂfld Σg 𝑋)) |
| 34 | oveq2 7398 | . . . 4 ⊢ (ℎ = 𝑌 → (ℂfld Σg ℎ) = (ℂfld Σg 𝑌)) | |
| 35 | ovex 7423 | . . . 4 ⊢ (ℂfld Σg 𝑌) ∈ V | |
| 36 | 34, 27, 35 | fvmpt 6971 | . . 3 ⊢ (𝑌 ∈ 𝐴 → (𝐻‘𝑌) = (ℂfld Σg 𝑌)) |
| 37 | 33, 36 | oveqan12d 7409 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐻‘𝑋) + (𝐻‘𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌))) |
| 38 | 24, 30, 37 | 3eqtr4d 2775 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 ↑m cmap 8802 Fincfn 8921 finSupp cfsupp 9319 ℂcc 11073 0cc0 11075 + caddc 11078 ℕcn 12193 ℕ0cn0 12449 Σg cgsu 17410 CMndccmn 19717 Ringcrg 20149 ℂfldccnfld 21271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-gsum 17412 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-ur 20098 df-ring 20151 df-cring 20152 df-cnfld 21272 |
| This theorem is referenced by: mdegmullem 25990 |
| Copyright terms: Public domain | W3C validator |