| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tdeglem3 | Structured version Visualization version GIF version | ||
| Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| tdeglem.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
| tdeglem.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
| Ref | Expression |
|---|---|
| tdeglem3 | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21304 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | cnfld0 21338 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
| 3 | cnfldadd 21306 | . . 3 ⊢ + = (+g‘ℂfld) | |
| 4 | cnring 21336 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 5 | ringcmn 20208 | . . . 4 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
| 6 | 4, 5 | mp1i 13 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ℂfld ∈ CMnd) |
| 7 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
| 8 | tdeglem.a | . . . . . . . 8 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
| 9 | 8 | psrbagf 21865 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐴 → 𝑋:𝐼⟶ℕ0) |
| 10 | nn0sscn 12397 | . . . . . . 7 ⊢ ℕ0 ⊆ ℂ | |
| 11 | fss 6675 | . . . . . . 7 ⊢ ((𝑋:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑋:𝐼⟶ℂ) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → 𝑋:𝐼⟶ℂ) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋:𝐼⟶ℂ) |
| 14 | 13 | ffnd 6660 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 Fn 𝐼) |
| 15 | 7, 14 | fndmexd 7843 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝐼 ∈ V) |
| 16 | 8 | psrbagf 21865 | . . . . 5 ⊢ (𝑌 ∈ 𝐴 → 𝑌:𝐼⟶ℕ0) |
| 17 | fss 6675 | . . . . 5 ⊢ ((𝑌:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑌:𝐼⟶ℂ) | |
| 18 | 16, 10, 17 | sylancl 586 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → 𝑌:𝐼⟶ℂ) |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌:𝐼⟶ℂ) |
| 20 | 8 | psrbagfsupp 21866 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 finSupp 0) |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 finSupp 0) |
| 22 | 8 | psrbagfsupp 21866 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → 𝑌 finSupp 0) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌 finSupp 0) |
| 24 | 1, 2, 3, 6, 15, 13, 19, 21, 23 | gsumadd 19843 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (ℂfld Σg (𝑋 ∘f + 𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌))) |
| 25 | 8 | psrbagaddcl 21871 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∘f + 𝑌) ∈ 𝐴) |
| 26 | oveq2 7363 | . . . 4 ⊢ (ℎ = (𝑋 ∘f + 𝑌) → (ℂfld Σg ℎ) = (ℂfld Σg (𝑋 ∘f + 𝑌))) | |
| 27 | tdeglem.h | . . . 4 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
| 28 | ovex 7388 | . . . 4 ⊢ (ℂfld Σg (𝑋 ∘f + 𝑌)) ∈ V | |
| 29 | 26, 27, 28 | fvmpt 6938 | . . 3 ⊢ ((𝑋 ∘f + 𝑌) ∈ 𝐴 → (𝐻‘(𝑋 ∘f + 𝑌)) = (ℂfld Σg (𝑋 ∘f + 𝑌))) |
| 30 | 25, 29 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = (ℂfld Σg (𝑋 ∘f + 𝑌))) |
| 31 | oveq2 7363 | . . . 4 ⊢ (ℎ = 𝑋 → (ℂfld Σg ℎ) = (ℂfld Σg 𝑋)) | |
| 32 | ovex 7388 | . . . 4 ⊢ (ℂfld Σg 𝑋) ∈ V | |
| 33 | 31, 27, 32 | fvmpt 6938 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝐻‘𝑋) = (ℂfld Σg 𝑋)) |
| 34 | oveq2 7363 | . . . 4 ⊢ (ℎ = 𝑌 → (ℂfld Σg ℎ) = (ℂfld Σg 𝑌)) | |
| 35 | ovex 7388 | . . . 4 ⊢ (ℂfld Σg 𝑌) ∈ V | |
| 36 | 34, 27, 35 | fvmpt 6938 | . . 3 ⊢ (𝑌 ∈ 𝐴 → (𝐻‘𝑌) = (ℂfld Σg 𝑌)) |
| 37 | 33, 36 | oveqan12d 7374 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐻‘𝑋) + (𝐻‘𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌))) |
| 38 | 24, 30, 37 | 3eqtr4d 2778 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 ↦ cmpt 5176 ◡ccnv 5620 “ cima 5624 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 ↑m cmap 8759 Fincfn 8879 finSupp cfsupp 9256 ℂcc 11015 0cc0 11017 + caddc 11020 ℕcn 12136 ℕ0cn0 12392 Σg cgsu 17351 CMndccmn 19700 Ringcrg 20159 ℂfldccnfld 21300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-addf 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-starv 17183 df-tset 17187 df-ple 17188 df-ds 17190 df-unif 17191 df-0g 17352 df-gsum 17353 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-grp 18857 df-minusg 18858 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-ur 20108 df-ring 20161 df-cring 20162 df-cnfld 21301 |
| This theorem is referenced by: mdegmullem 26030 |
| Copyright terms: Public domain | W3C validator |