MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem3 Structured version   Visualization version   GIF version

Theorem tdeglem3 25980
Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem3 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = ((𝐻𝑋) + (𝐻𝑌)))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑋,𝑚   ,𝑌,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)

Proof of Theorem tdeglem3
StepHypRef Expression
1 cnfldbas 21283 . . 3 ℂ = (Base‘ℂfld)
2 cnfld0 21317 . . 3 0 = (0g‘ℂfld)
3 cnfldadd 21285 . . 3 + = (+g‘ℂfld)
4 cnring 21315 . . . 4 fld ∈ Ring
5 ringcmn 20185 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
64, 5mp1i 13 . . 3 ((𝑋𝐴𝑌𝐴) → ℂfld ∈ CMnd)
7 simpl 482 . . . 4 ((𝑋𝐴𝑌𝐴) → 𝑋𝐴)
8 tdeglem.a . . . . . . . 8 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 21843 . . . . . . 7 (𝑋𝐴𝑋:𝐼⟶ℕ0)
10 nn0sscn 12407 . . . . . . 7 0 ⊆ ℂ
11 fss 6672 . . . . . . 7 ((𝑋:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑋:𝐼⟶ℂ)
129, 10, 11sylancl 586 . . . . . 6 (𝑋𝐴𝑋:𝐼⟶ℂ)
1312adantr 480 . . . . 5 ((𝑋𝐴𝑌𝐴) → 𝑋:𝐼⟶ℂ)
1413ffnd 6657 . . . 4 ((𝑋𝐴𝑌𝐴) → 𝑋 Fn 𝐼)
157, 14fndmexd 7844 . . 3 ((𝑋𝐴𝑌𝐴) → 𝐼 ∈ V)
168psrbagf 21843 . . . . 5 (𝑌𝐴𝑌:𝐼⟶ℕ0)
17 fss 6672 . . . . 5 ((𝑌:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑌:𝐼⟶ℂ)
1816, 10, 17sylancl 586 . . . 4 (𝑌𝐴𝑌:𝐼⟶ℂ)
1918adantl 481 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑌:𝐼⟶ℂ)
208psrbagfsupp 21844 . . . 4 (𝑋𝐴𝑋 finSupp 0)
2120adantr 480 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑋 finSupp 0)
228psrbagfsupp 21844 . . . 4 (𝑌𝐴𝑌 finSupp 0)
2322adantl 481 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑌 finSupp 0)
241, 2, 3, 6, 15, 13, 19, 21, 23gsumadd 19820 . 2 ((𝑋𝐴𝑌𝐴) → (ℂfld Σg (𝑋f + 𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌)))
258psrbagaddcl 21849 . . 3 ((𝑋𝐴𝑌𝐴) → (𝑋f + 𝑌) ∈ 𝐴)
26 oveq2 7361 . . . 4 ( = (𝑋f + 𝑌) → (ℂfld Σg ) = (ℂfld Σg (𝑋f + 𝑌)))
27 tdeglem.h . . . 4 𝐻 = (𝐴 ↦ (ℂfld Σg ))
28 ovex 7386 . . . 4 (ℂfld Σg (𝑋f + 𝑌)) ∈ V
2926, 27, 28fvmpt 6934 . . 3 ((𝑋f + 𝑌) ∈ 𝐴 → (𝐻‘(𝑋f + 𝑌)) = (ℂfld Σg (𝑋f + 𝑌)))
3025, 29syl 17 . 2 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = (ℂfld Σg (𝑋f + 𝑌)))
31 oveq2 7361 . . . 4 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
32 ovex 7386 . . . 4 (ℂfld Σg 𝑋) ∈ V
3331, 27, 32fvmpt 6934 . . 3 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
34 oveq2 7361 . . . 4 ( = 𝑌 → (ℂfld Σg ) = (ℂfld Σg 𝑌))
35 ovex 7386 . . . 4 (ℂfld Σg 𝑌) ∈ V
3634, 27, 35fvmpt 6934 . . 3 (𝑌𝐴 → (𝐻𝑌) = (ℂfld Σg 𝑌))
3733, 36oveqan12d 7372 . 2 ((𝑋𝐴𝑌𝐴) → ((𝐻𝑋) + (𝐻𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌)))
3824, 30, 373eqtr4d 2774 1 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = ((𝐻𝑋) + (𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  wss 3905   class class class wbr 5095  cmpt 5176  ccnv 5622  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615  m cmap 8760  Fincfn 8879   finSupp cfsupp 9270  cc 11026  0cc0 11028   + caddc 11031  cn 12146  0cn0 12402   Σg cgsu 17362  CMndccmn 19677  Ringcrg 20136  fldccnfld 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-ur 20085  df-ring 20138  df-cring 20139  df-cnfld 21280
This theorem is referenced by:  mdegmullem  25999
  Copyright terms: Public domain W3C validator