Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tdeglem3 | Structured version Visualization version GIF version |
Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
tdeglem.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
tdeglem.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
Ref | Expression |
---|---|
tdeglem3 | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 20514 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
2 | cnfld0 20534 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
3 | cnfldadd 20515 | . . 3 ⊢ + = (+g‘ℂfld) | |
4 | cnring 20532 | . . . 4 ⊢ ℂfld ∈ Ring | |
5 | ringcmn 19735 | . . . 4 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
6 | 4, 5 | mp1i 13 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ℂfld ∈ CMnd) |
7 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
8 | tdeglem.a | . . . . . . . 8 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
9 | 8 | psrbagf 21031 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐴 → 𝑋:𝐼⟶ℕ0) |
10 | nn0sscn 12168 | . . . . . . 7 ⊢ ℕ0 ⊆ ℂ | |
11 | fss 6601 | . . . . . . 7 ⊢ ((𝑋:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑋:𝐼⟶ℂ) | |
12 | 9, 10, 11 | sylancl 585 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → 𝑋:𝐼⟶ℂ) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋:𝐼⟶ℂ) |
14 | 13 | ffnd 6585 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 Fn 𝐼) |
15 | 7, 14 | fndmexd 7727 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝐼 ∈ V) |
16 | 8 | psrbagf 21031 | . . . . 5 ⊢ (𝑌 ∈ 𝐴 → 𝑌:𝐼⟶ℕ0) |
17 | fss 6601 | . . . . 5 ⊢ ((𝑌:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑌:𝐼⟶ℂ) | |
18 | 16, 10, 17 | sylancl 585 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → 𝑌:𝐼⟶ℂ) |
19 | 18 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌:𝐼⟶ℂ) |
20 | 8 | psrbagfsupp 21033 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 finSupp 0) |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 finSupp 0) |
22 | 8 | psrbagfsupp 21033 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → 𝑌 finSupp 0) |
23 | 22 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌 finSupp 0) |
24 | 1, 2, 3, 6, 15, 13, 19, 21, 23 | gsumadd 19439 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (ℂfld Σg (𝑋 ∘f + 𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌))) |
25 | 8 | psrbagaddcl 21041 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∘f + 𝑌) ∈ 𝐴) |
26 | oveq2 7263 | . . . 4 ⊢ (ℎ = (𝑋 ∘f + 𝑌) → (ℂfld Σg ℎ) = (ℂfld Σg (𝑋 ∘f + 𝑌))) | |
27 | tdeglem.h | . . . 4 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
28 | ovex 7288 | . . . 4 ⊢ (ℂfld Σg (𝑋 ∘f + 𝑌)) ∈ V | |
29 | 26, 27, 28 | fvmpt 6857 | . . 3 ⊢ ((𝑋 ∘f + 𝑌) ∈ 𝐴 → (𝐻‘(𝑋 ∘f + 𝑌)) = (ℂfld Σg (𝑋 ∘f + 𝑌))) |
30 | 25, 29 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = (ℂfld Σg (𝑋 ∘f + 𝑌))) |
31 | oveq2 7263 | . . . 4 ⊢ (ℎ = 𝑋 → (ℂfld Σg ℎ) = (ℂfld Σg 𝑋)) | |
32 | ovex 7288 | . . . 4 ⊢ (ℂfld Σg 𝑋) ∈ V | |
33 | 31, 27, 32 | fvmpt 6857 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝐻‘𝑋) = (ℂfld Σg 𝑋)) |
34 | oveq2 7263 | . . . 4 ⊢ (ℎ = 𝑌 → (ℂfld Σg ℎ) = (ℂfld Σg 𝑌)) | |
35 | ovex 7288 | . . . 4 ⊢ (ℂfld Σg 𝑌) ∈ V | |
36 | 34, 27, 35 | fvmpt 6857 | . . 3 ⊢ (𝑌 ∈ 𝐴 → (𝐻‘𝑌) = (ℂfld Σg 𝑌)) |
37 | 33, 36 | oveqan12d 7274 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐻‘𝑋) + (𝐻‘𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌))) |
38 | 24, 30, 37 | 3eqtr4d 2788 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ◡ccnv 5579 “ cima 5583 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ↑m cmap 8573 Fincfn 8691 finSupp cfsupp 9058 ℂcc 10800 0cc0 10802 + caddc 10805 ℕcn 11903 ℕ0cn0 12163 Σg cgsu 17068 CMndccmn 19301 Ringcrg 19698 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-cnfld 20511 |
This theorem is referenced by: mdegmullem 25148 |
Copyright terms: Public domain | W3C validator |