| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tdeglem3 | Structured version Visualization version GIF version | ||
| Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| tdeglem.a | ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} |
| tdeglem.h | ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) |
| Ref | Expression |
|---|---|
| tdeglem3 | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 21290 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | cnfld0 21324 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
| 3 | cnfldadd 21292 | . . 3 ⊢ + = (+g‘ℂfld) | |
| 4 | cnring 21322 | . . . 4 ⊢ ℂfld ∈ Ring | |
| 5 | ringcmn 20195 | . . . 4 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
| 6 | 4, 5 | mp1i 13 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ℂfld ∈ CMnd) |
| 7 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
| 8 | tdeglem.a | . . . . . . . 8 ⊢ 𝐴 = {𝑚 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑚 “ ℕ) ∈ Fin} | |
| 9 | 8 | psrbagf 21850 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐴 → 𝑋:𝐼⟶ℕ0) |
| 10 | nn0sscn 12381 | . . . . . . 7 ⊢ ℕ0 ⊆ ℂ | |
| 11 | fss 6662 | . . . . . . 7 ⊢ ((𝑋:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑋:𝐼⟶ℂ) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . . . 6 ⊢ (𝑋 ∈ 𝐴 → 𝑋:𝐼⟶ℂ) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋:𝐼⟶ℂ) |
| 14 | 13 | ffnd 6647 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 Fn 𝐼) |
| 15 | 7, 14 | fndmexd 7829 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝐼 ∈ V) |
| 16 | 8 | psrbagf 21850 | . . . . 5 ⊢ (𝑌 ∈ 𝐴 → 𝑌:𝐼⟶ℕ0) |
| 17 | fss 6662 | . . . . 5 ⊢ ((𝑌:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑌:𝐼⟶ℂ) | |
| 18 | 16, 10, 17 | sylancl 586 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → 𝑌:𝐼⟶ℂ) |
| 19 | 18 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌:𝐼⟶ℂ) |
| 20 | 8 | psrbagfsupp 21851 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → 𝑋 finSupp 0) |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑋 finSupp 0) |
| 22 | 8 | psrbagfsupp 21851 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → 𝑌 finSupp 0) |
| 23 | 22 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → 𝑌 finSupp 0) |
| 24 | 1, 2, 3, 6, 15, 13, 19, 21, 23 | gsumadd 19830 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (ℂfld Σg (𝑋 ∘f + 𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌))) |
| 25 | 8 | psrbagaddcl 21856 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 ∘f + 𝑌) ∈ 𝐴) |
| 26 | oveq2 7349 | . . . 4 ⊢ (ℎ = (𝑋 ∘f + 𝑌) → (ℂfld Σg ℎ) = (ℂfld Σg (𝑋 ∘f + 𝑌))) | |
| 27 | tdeglem.h | . . . 4 ⊢ 𝐻 = (ℎ ∈ 𝐴 ↦ (ℂfld Σg ℎ)) | |
| 28 | ovex 7374 | . . . 4 ⊢ (ℂfld Σg (𝑋 ∘f + 𝑌)) ∈ V | |
| 29 | 26, 27, 28 | fvmpt 6924 | . . 3 ⊢ ((𝑋 ∘f + 𝑌) ∈ 𝐴 → (𝐻‘(𝑋 ∘f + 𝑌)) = (ℂfld Σg (𝑋 ∘f + 𝑌))) |
| 30 | 25, 29 | syl 17 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = (ℂfld Σg (𝑋 ∘f + 𝑌))) |
| 31 | oveq2 7349 | . . . 4 ⊢ (ℎ = 𝑋 → (ℂfld Σg ℎ) = (ℂfld Σg 𝑋)) | |
| 32 | ovex 7374 | . . . 4 ⊢ (ℂfld Σg 𝑋) ∈ V | |
| 33 | 31, 27, 32 | fvmpt 6924 | . . 3 ⊢ (𝑋 ∈ 𝐴 → (𝐻‘𝑋) = (ℂfld Σg 𝑋)) |
| 34 | oveq2 7349 | . . . 4 ⊢ (ℎ = 𝑌 → (ℂfld Σg ℎ) = (ℂfld Σg 𝑌)) | |
| 35 | ovex 7374 | . . . 4 ⊢ (ℂfld Σg 𝑌) ∈ V | |
| 36 | 34, 27, 35 | fvmpt 6924 | . . 3 ⊢ (𝑌 ∈ 𝐴 → (𝐻‘𝑌) = (ℂfld Σg 𝑌)) |
| 37 | 33, 36 | oveqan12d 7360 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐻‘𝑋) + (𝐻‘𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌))) |
| 38 | 24, 30, 37 | 3eqtr4d 2776 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝐻‘(𝑋 ∘f + 𝑌)) = ((𝐻‘𝑋) + (𝐻‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 ◡ccnv 5610 “ cima 5614 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 ↑m cmap 8745 Fincfn 8864 finSupp cfsupp 9240 ℂcc 10999 0cc0 11001 + caddc 11004 ℕcn 12120 ℕ0cn0 12376 Σg cgsu 17339 CMndccmn 19687 Ringcrg 20146 ℂfldccnfld 21286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-addf 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-0g 17340 df-gsum 17341 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-ur 20095 df-ring 20148 df-cring 20149 df-cnfld 21287 |
| This theorem is referenced by: mdegmullem 26005 |
| Copyright terms: Public domain | W3C validator |