MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tdeglem3 Structured version   Visualization version   GIF version

Theorem tdeglem3 25940
Description: Additivity of the total degree helper function. (Contributed by Stefan O'Rear, 26-Mar-2015.) (Proof shortened by AV, 27-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
tdeglem.a 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
tdeglem.h 𝐻 = (𝐴 ↦ (ℂfld Σg ))
Assertion
Ref Expression
tdeglem3 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = ((𝐻𝑋) + (𝐻𝑌)))
Distinct variable groups:   𝐴,   ,𝐼,𝑚   ,𝑋,𝑚   ,𝑌,𝑚
Allowed substitution hints:   𝐴(𝑚)   𝐻(,𝑚)

Proof of Theorem tdeglem3
StepHypRef Expression
1 cnfldbas 21244 . . 3 ℂ = (Base‘ℂfld)
2 cnfld0 21280 . . 3 0 = (0g‘ℂfld)
3 cnfldadd 21246 . . 3 + = (+g‘ℂfld)
4 cnring 21278 . . . 4 fld ∈ Ring
5 ringcmn 20167 . . . 4 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
64, 5mp1i 13 . . 3 ((𝑋𝐴𝑌𝐴) → ℂfld ∈ CMnd)
7 simpl 482 . . . 4 ((𝑋𝐴𝑌𝐴) → 𝑋𝐴)
8 tdeglem.a . . . . . . . 8 𝐴 = {𝑚 ∈ (ℕ0m 𝐼) ∣ (𝑚 “ ℕ) ∈ Fin}
98psrbagf 21803 . . . . . . 7 (𝑋𝐴𝑋:𝐼⟶ℕ0)
10 nn0sscn 12423 . . . . . . 7 0 ⊆ ℂ
11 fss 6686 . . . . . . 7 ((𝑋:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑋:𝐼⟶ℂ)
129, 10, 11sylancl 586 . . . . . 6 (𝑋𝐴𝑋:𝐼⟶ℂ)
1312adantr 480 . . . . 5 ((𝑋𝐴𝑌𝐴) → 𝑋:𝐼⟶ℂ)
1413ffnd 6671 . . . 4 ((𝑋𝐴𝑌𝐴) → 𝑋 Fn 𝐼)
157, 14fndmexd 7860 . . 3 ((𝑋𝐴𝑌𝐴) → 𝐼 ∈ V)
168psrbagf 21803 . . . . 5 (𝑌𝐴𝑌:𝐼⟶ℕ0)
17 fss 6686 . . . . 5 ((𝑌:𝐼⟶ℕ0 ∧ ℕ0 ⊆ ℂ) → 𝑌:𝐼⟶ℂ)
1816, 10, 17sylancl 586 . . . 4 (𝑌𝐴𝑌:𝐼⟶ℂ)
1918adantl 481 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑌:𝐼⟶ℂ)
208psrbagfsupp 21804 . . . 4 (𝑋𝐴𝑋 finSupp 0)
2120adantr 480 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑋 finSupp 0)
228psrbagfsupp 21804 . . . 4 (𝑌𝐴𝑌 finSupp 0)
2322adantl 481 . . 3 ((𝑋𝐴𝑌𝐴) → 𝑌 finSupp 0)
241, 2, 3, 6, 15, 13, 19, 21, 23gsumadd 19829 . 2 ((𝑋𝐴𝑌𝐴) → (ℂfld Σg (𝑋f + 𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌)))
258psrbagaddcl 21809 . . 3 ((𝑋𝐴𝑌𝐴) → (𝑋f + 𝑌) ∈ 𝐴)
26 oveq2 7377 . . . 4 ( = (𝑋f + 𝑌) → (ℂfld Σg ) = (ℂfld Σg (𝑋f + 𝑌)))
27 tdeglem.h . . . 4 𝐻 = (𝐴 ↦ (ℂfld Σg ))
28 ovex 7402 . . . 4 (ℂfld Σg (𝑋f + 𝑌)) ∈ V
2926, 27, 28fvmpt 6950 . . 3 ((𝑋f + 𝑌) ∈ 𝐴 → (𝐻‘(𝑋f + 𝑌)) = (ℂfld Σg (𝑋f + 𝑌)))
3025, 29syl 17 . 2 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = (ℂfld Σg (𝑋f + 𝑌)))
31 oveq2 7377 . . . 4 ( = 𝑋 → (ℂfld Σg ) = (ℂfld Σg 𝑋))
32 ovex 7402 . . . 4 (ℂfld Σg 𝑋) ∈ V
3331, 27, 32fvmpt 6950 . . 3 (𝑋𝐴 → (𝐻𝑋) = (ℂfld Σg 𝑋))
34 oveq2 7377 . . . 4 ( = 𝑌 → (ℂfld Σg ) = (ℂfld Σg 𝑌))
35 ovex 7402 . . . 4 (ℂfld Σg 𝑌) ∈ V
3634, 27, 35fvmpt 6950 . . 3 (𝑌𝐴 → (𝐻𝑌) = (ℂfld Σg 𝑌))
3733, 36oveqan12d 7388 . 2 ((𝑋𝐴𝑌𝐴) → ((𝐻𝑋) + (𝐻𝑌)) = ((ℂfld Σg 𝑋) + (ℂfld Σg 𝑌)))
3824, 30, 373eqtr4d 2774 1 ((𝑋𝐴𝑌𝐴) → (𝐻‘(𝑋f + 𝑌)) = ((𝐻𝑋) + (𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  wss 3911   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  m cmap 8776  Fincfn 8895   finSupp cfsupp 9288  cc 11042  0cc0 11044   + caddc 11047  cn 12162  0cn0 12418   Σg cgsu 17379  CMndccmn 19686  Ringcrg 20118  fldccnfld 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-gsum 17381  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-ur 20067  df-ring 20120  df-cring 20121  df-cnfld 21241
This theorem is referenced by:  mdegmullem  25959
  Copyright terms: Public domain W3C validator