![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagfsupp | Structured version Visualization version GIF version |
Description: Finite bags have finite support. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
psrbagfsupp | ⊢ (𝐹 ∈ 𝐷 → 𝐹 finSupp 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷) | |
2 | psrbag.d | . . . . . . 7 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
3 | 2 | psrbagf 21915 | . . . . . 6 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
4 | 3 | ffnd 6729 | . . . . 5 ⊢ (𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼) |
5 | 1, 4 | fndmexd 7917 | . . . 4 ⊢ (𝐹 ∈ 𝐷 → 𝐼 ∈ V) |
6 | 2 | psrbag 21914 | . . . . 5 ⊢ (𝐼 ∈ V → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
7 | 6 | biimpa 475 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝐹 ∈ 𝐷) → (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin)) |
8 | 5, 7 | mpancom 686 | . . 3 ⊢ (𝐹 ∈ 𝐷 → (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin)) |
9 | 8 | simprd 494 | . 2 ⊢ (𝐹 ∈ 𝐷 → (◡𝐹 “ ℕ) ∈ Fin) |
10 | fcdmnn0fsuppg 12583 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) | |
11 | 3, 10 | mpdan 685 | . 2 ⊢ (𝐹 ∈ 𝐷 → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) |
12 | 9, 11 | mpbird 256 | 1 ⊢ (𝐹 ∈ 𝐷 → 𝐹 finSupp 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 class class class wbr 5153 ◡ccnv 5681 “ cima 5685 ⟶wf 6550 (class class class)co 7424 ↑m cmap 8855 Fincfn 8974 finSupp cfsupp 9405 0cc0 11158 ℕcn 12264 ℕ0cn0 12524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fsupp 9406 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-nn 12265 df-n0 12525 |
This theorem is referenced by: psrbagaddcl 21925 psrbagev1 22090 mhpmulcl 22143 tdeglem1 26082 tdeglem3 26084 tdeglem4 26086 psrbagres 42018 evlsvvvallem 42033 evlsvvval 42035 selvvvval 42057 evlselvlem 42058 evlselv 42059 mhphflem 42068 mhphf 42069 |
Copyright terms: Public domain | W3C validator |