MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagfsupp Structured version   Visualization version   GIF version

Theorem psrbagfsupp 21104
Description: Finite bags have finite support. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagfsupp (𝐹𝐷𝐹 finSupp 0)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagfsupp
StepHypRef Expression
1 id 22 . . . . 5 (𝐹𝐷𝐹𝐷)
2 psrbag.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbagf 21102 . . . . . 6 (𝐹𝐷𝐹:𝐼⟶ℕ0)
43ffnd 6597 . . . . 5 (𝐹𝐷𝐹 Fn 𝐼)
51, 4fndmexd 7740 . . . 4 (𝐹𝐷𝐼 ∈ V)
62psrbag 21101 . . . . 5 (𝐼 ∈ V → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
76biimpa 476 . . . 4 ((𝐼 ∈ V ∧ 𝐹𝐷) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
85, 7mpancom 684 . . 3 (𝐹𝐷 → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
98simprd 495 . 2 (𝐹𝐷 → (𝐹 “ ℕ) ∈ Fin)
10 frnnn0fsuppg 12275 . . 3 ((𝐹𝐷𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (𝐹 “ ℕ) ∈ Fin))
113, 10mpdan 683 . 2 (𝐹𝐷 → (𝐹 finSupp 0 ↔ (𝐹 “ ℕ) ∈ Fin))
129, 11mpbird 256 1 (𝐹𝐷𝐹 finSupp 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  {crab 3069  Vcvv 3430   class class class wbr 5078  ccnv 5587  cima 5591  wf 6426  (class class class)co 7268  m cmap 8589  Fincfn 8707   finSupp cfsupp 9089  0cc0 10855  cn 11956  0cn0 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-fsupp 9090  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-nn 11957  df-n0 12217
This theorem is referenced by:  psrbagaddcl  21112  psrbagev1  21266  mhpmulcl  21320  tdeglem1  25201  tdeglem3  25203  tdeglem4  25205  evlsbagval  40255  mhphflem  40264  mhphf  40265
  Copyright terms: Public domain W3C validator