MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagaddcl Structured version   Visualization version   GIF version

Theorem psrbagaddcl 20608
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagaddcl ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺) ∈ 𝐷)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbagaddcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0addcl 11920 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
21adantl 485 . . 3 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0)
3 simp2 1134 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐹𝐷)
4 psrbag.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
54psrbag 20602 . . . . . 6 (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
653ad2ant1 1130 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
73, 6mpbid 235 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
87simpld 498 . . 3 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐹:𝐼⟶ℕ0)
9 simp3 1135 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐺𝐷)
104psrbag 20602 . . . . . 6 (𝐼𝑉 → (𝐺𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (𝐺 “ ℕ) ∈ Fin)))
11103ad2ant1 1130 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (𝐺 “ ℕ) ∈ Fin)))
129, 11mpbid 235 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺:𝐼⟶ℕ0 ∧ (𝐺 “ ℕ) ∈ Fin))
1312simpld 498 . . 3 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐺:𝐼⟶ℕ0)
14 simp1 1133 . . 3 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐼𝑉)
15 inidm 4145 . . 3 (𝐼𝐼) = 𝐼
162, 8, 13, 14, 14, 15off 7404 . 2 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺):𝐼⟶ℕ0)
17 frnnn0supp 11941 . . . . 5 ((𝐼𝑉 ∧ (𝐹f + 𝐺):𝐼⟶ℕ0) → ((𝐹f + 𝐺) supp 0) = ((𝐹f + 𝐺) “ ℕ))
1814, 16, 17syl2anc 587 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) supp 0) = ((𝐹f + 𝐺) “ ℕ))
19 fvexd 6660 . . . . . 6 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ V)
20 fvexd 6660 . . . . . 6 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ V)
218feqmptd 6708 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
2213feqmptd 6708 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
2314, 19, 20, 21, 22offval2 7406 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
2423oveq1d 7150 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) supp 0) = ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))) supp 0))
2518, 24eqtr3d 2835 . . 3 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) “ ℕ) = ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))) supp 0))
26 frnnn0supp 11941 . . . . . . 7 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
2714, 8, 26syl2anc 587 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹 supp 0) = (𝐹 “ ℕ))
287simprd 499 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹 “ ℕ) ∈ Fin)
2927, 28eqeltrd 2890 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹 supp 0) ∈ Fin)
30 frnnn0supp 11941 . . . . . . 7 ((𝐼𝑉𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (𝐺 “ ℕ))
3114, 13, 30syl2anc 587 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺 supp 0) = (𝐺 “ ℕ))
3212simprd 499 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺 “ ℕ) ∈ Fin)
3331, 32eqeltrd 2890 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺 supp 0) ∈ Fin)
34 unfi 8769 . . . . 5 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
3529, 33, 34syl2anc 587 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
36 ssun1 4099 . . . . . . . . 9 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
3736a1i 11 . . . . . . . 8 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
38 c0ex 10624 . . . . . . . . 9 0 ∈ V
3938a1i 11 . . . . . . . 8 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 0 ∈ V)
408, 37, 14, 39suppssr 7844 . . . . . . 7 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑥) = 0)
41 ssun2 4100 . . . . . . . . 9 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
4241a1i 11 . . . . . . . 8 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
4313, 42, 14, 39suppssr 7844 . . . . . . 7 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝑥) = 0)
4440, 43oveq12d 7153 . . . . . 6 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝑥) + (𝐺𝑥)) = (0 + 0))
45 00id 10804 . . . . . 6 (0 + 0) = 0
4644, 45eqtrdi 2849 . . . . 5 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝑥) + (𝐺𝑥)) = 0)
4746, 14suppss2 7847 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
4835, 47ssfid 8725 . . 3 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))) supp 0) ∈ Fin)
4925, 48eqeltrd 2890 . 2 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) “ ℕ) ∈ Fin)
504psrbag 20602 . . 3 (𝐼𝑉 → ((𝐹f + 𝐺) ∈ 𝐷 ↔ ((𝐹f + 𝐺):𝐼⟶ℕ0 ∧ ((𝐹f + 𝐺) “ ℕ) ∈ Fin)))
51503ad2ant1 1130 . 2 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) ∈ 𝐷 ↔ ((𝐹f + 𝐺):𝐼⟶ℕ0 ∧ ((𝐹f + 𝐺) “ ℕ) ∈ Fin)))
5216, 49, 51mpbir2and 712 1 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  cdif 3878  cun 3879  wss 3881  cmpt 5110  ccnv 5518  cima 5522  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387   supp csupp 7813  m cmap 8389  Fincfn 8492  0cc0 10526   + caddc 10529  cn 11625  0cn0 11885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-nn 11626  df-n0 11886
This theorem is referenced by:  mplmon2mul  20740  evlslem1  20754  tdeglem3  24660
  Copyright terms: Public domain W3C validator