| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagaddcl | Structured version Visualization version GIF version | ||
| Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.) Shorten proof and remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagaddcl | ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺) ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0addcl 12541 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0) |
| 3 | psrbag.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 4 | 3 | psrbagf 21883 | . . . 4 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹:𝐼⟶ℕ0) |
| 6 | 3 | psrbagf 21883 | . . . 4 ⊢ (𝐺 ∈ 𝐷 → 𝐺:𝐼⟶ℕ0) |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐺:𝐼⟶ℕ0) |
| 8 | simpl 482 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 ∈ 𝐷) | |
| 9 | 5 | ffnd 6712 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 Fn 𝐼) |
| 10 | 8, 9 | fndmexd 7905 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐼 ∈ V) |
| 11 | inidm 4207 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
| 12 | 2, 5, 7, 10, 10, 11 | off 7694 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺):𝐼⟶ℕ0) |
| 13 | ovex 7443 | . . . 4 ⊢ (𝐹 ∘f + 𝐺) ∈ V | |
| 14 | fcdmnn0suppg 12565 | . . . 4 ⊢ (((𝐹 ∘f + 𝐺) ∈ V ∧ (𝐹 ∘f + 𝐺):𝐼⟶ℕ0) → ((𝐹 ∘f + 𝐺) supp 0) = (◡(𝐹 ∘f + 𝐺) “ ℕ)) | |
| 15 | 13, 12, 14 | sylancr 587 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) = (◡(𝐹 ∘f + 𝐺) “ ℕ)) |
| 16 | 3 | psrbagfsupp 21884 | . . . . . 6 ⊢ (𝐹 ∈ 𝐷 → 𝐹 finSupp 0) |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 finSupp 0) |
| 18 | 3 | psrbagfsupp 21884 | . . . . . 6 ⊢ (𝐺 ∈ 𝐷 → 𝐺 finSupp 0) |
| 19 | 18 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐺 finSupp 0) |
| 20 | 17, 19 | fsuppunfi 9405 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin) |
| 21 | 0nn0 12521 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 0 ∈ ℕ0) |
| 23 | 00id 11415 | . . . . . 6 ⊢ (0 + 0) = 0 | |
| 24 | 23 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (0 + 0) = 0) |
| 25 | 10, 22, 5, 7, 24 | suppofssd 8207 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
| 26 | 20, 25 | ssfid 9278 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) ∈ Fin) |
| 27 | 15, 26 | eqeltrrd 2836 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈ Fin) |
| 28 | 3 | psrbag 21882 | . . 3 ⊢ (𝐼 ∈ V → ((𝐹 ∘f + 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f + 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈ Fin))) |
| 29 | 10, 28 | syl 17 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f + 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈ Fin))) |
| 30 | 12, 27, 29 | mpbir2and 713 | 1 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺) ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 ∪ cun 3929 class class class wbr 5124 ◡ccnv 5658 “ cima 5662 ⟶wf 6532 (class class class)co 7410 ∘f cof 7674 supp csupp 8164 ↑m cmap 8845 Fincfn 8964 finSupp cfsupp 9378 0cc0 11134 + caddc 11137 ℕcn 12245 ℕ0cn0 12506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-nn 12246 df-n0 12507 |
| This theorem is referenced by: psrbagleadd1 21893 mplmon2mul 22032 evlslem1 22045 psdcl 22104 psdmplcl 22105 psdadd 22106 psdvsca 22107 psdmul 22109 psdmvr 22112 tdeglem3 26021 |
| Copyright terms: Public domain | W3C validator |