MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagaddcl Structured version   Visualization version   GIF version

Theorem psrbagaddcl 19771
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagaddcl ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹𝑓 + 𝐺) ∈ 𝐷)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbagaddcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0addcl 11683 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
21adantl 475 . . 3 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0)
3 simp2 1128 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐹𝐷)
4 psrbag.d . . . . . . 7 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
54psrbag 19765 . . . . . 6 (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
653ad2ant1 1124 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
73, 6mpbid 224 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
87simpld 490 . . 3 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐹:𝐼⟶ℕ0)
9 simp3 1129 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐺𝐷)
104psrbag 19765 . . . . . 6 (𝐼𝑉 → (𝐺𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (𝐺 “ ℕ) ∈ Fin)))
11103ad2ant1 1124 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (𝐺 “ ℕ) ∈ Fin)))
129, 11mpbid 224 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺:𝐼⟶ℕ0 ∧ (𝐺 “ ℕ) ∈ Fin))
1312simpld 490 . . 3 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐺:𝐼⟶ℕ0)
14 simp1 1127 . . 3 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐼𝑉)
15 inidm 4043 . . 3 (𝐼𝐼) = 𝐼
162, 8, 13, 14, 14, 15off 7191 . 2 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹𝑓 + 𝐺):𝐼⟶ℕ0)
17 frnnn0supp 11704 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝑓 + 𝐺):𝐼⟶ℕ0) → ((𝐹𝑓 + 𝐺) supp 0) = ((𝐹𝑓 + 𝐺) “ ℕ))
1814, 16, 17syl2anc 579 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹𝑓 + 𝐺) supp 0) = ((𝐹𝑓 + 𝐺) “ ℕ))
19 fvexd 6463 . . . . . 6 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ V)
20 fvexd 6463 . . . . . 6 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ V)
218feqmptd 6511 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
2213feqmptd 6511 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
2314, 19, 20, 21, 22offval2 7193 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹𝑓 + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
2423oveq1d 6939 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹𝑓 + 𝐺) supp 0) = ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))) supp 0))
2518, 24eqtr3d 2816 . . 3 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹𝑓 + 𝐺) “ ℕ) = ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))) supp 0))
26 frnnn0supp 11704 . . . . . . 7 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
2714, 8, 26syl2anc 579 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹 supp 0) = (𝐹 “ ℕ))
287simprd 491 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹 “ ℕ) ∈ Fin)
2927, 28eqeltrd 2859 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹 supp 0) ∈ Fin)
30 frnnn0supp 11704 . . . . . . 7 ((𝐼𝑉𝐺:𝐼⟶ℕ0) → (𝐺 supp 0) = (𝐺 “ ℕ))
3114, 13, 30syl2anc 579 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺 supp 0) = (𝐺 “ ℕ))
3212simprd 491 . . . . . 6 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺 “ ℕ) ∈ Fin)
3331, 32eqeltrd 2859 . . . . 5 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺 supp 0) ∈ Fin)
34 unfi 8517 . . . . 5 (((𝐹 supp 0) ∈ Fin ∧ (𝐺 supp 0) ∈ Fin) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
3529, 33, 34syl2anc 579 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
36 ssun1 3999 . . . . . . . . 9 (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
3736a1i 11 . . . . . . . 8 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
38 c0ex 10372 . . . . . . . . 9 0 ∈ V
3938a1i 11 . . . . . . . 8 ((𝐼𝑉𝐹𝐷𝐺𝐷) → 0 ∈ V)
408, 37, 14, 39suppssr 7610 . . . . . . 7 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐹𝑥) = 0)
41 ssun2 4000 . . . . . . . . 9 (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))
4241a1i 11 . . . . . . . 8 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐺 supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
4313, 42, 14, 39suppssr 7610 . . . . . . 7 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → (𝐺𝑥) = 0)
4440, 43oveq12d 6942 . . . . . 6 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝑥) + (𝐺𝑥)) = (0 + 0))
45 00id 10553 . . . . . 6 (0 + 0) = 0
4644, 45syl6eq 2830 . . . . 5 (((𝐼𝑉𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0) ∪ (𝐺 supp 0)))) → ((𝐹𝑥) + (𝐺𝑥)) = 0)
4746, 14suppss2 7613 . . . 4 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
4835, 47ssfid 8473 . . 3 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))) supp 0) ∈ Fin)
4925, 48eqeltrd 2859 . 2 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹𝑓 + 𝐺) “ ℕ) ∈ Fin)
504psrbag 19765 . . 3 (𝐼𝑉 → ((𝐹𝑓 + 𝐺) ∈ 𝐷 ↔ ((𝐹𝑓 + 𝐺):𝐼⟶ℕ0 ∧ ((𝐹𝑓 + 𝐺) “ ℕ) ∈ Fin)))
51503ad2ant1 1124 . 2 ((𝐼𝑉𝐹𝐷𝐺𝐷) → ((𝐹𝑓 + 𝐺) ∈ 𝐷 ↔ ((𝐹𝑓 + 𝐺):𝐼⟶ℕ0 ∧ ((𝐹𝑓 + 𝐺) “ ℕ) ∈ Fin)))
5216, 49, 51mpbir2and 703 1 ((𝐼𝑉𝐹𝐷𝐺𝐷) → (𝐹𝑓 + 𝐺) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  {crab 3094  Vcvv 3398  cdif 3789  cun 3790  wss 3792  cmpt 4967  ccnv 5356  cima 5360  wf 6133  cfv 6137  (class class class)co 6924  𝑓 cof 7174   supp csupp 7578  𝑚 cmap 8142  Fincfn 8243  0cc0 10274   + caddc 10277  cn 11378  0cn0 11646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-nn 11379  df-n0 11647
This theorem is referenced by:  mplmon2mul  19901  evlslem1  19915  tdeglem3  24260
  Copyright terms: Public domain W3C validator