![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagaddcl | Structured version Visualization version GIF version |
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.) Shorten proof and remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
psrbag.d | β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
Ref | Expression |
---|---|
psrbagaddcl | β’ ((πΉ β π· β§ πΊ β π·) β (πΉ βf + πΊ) β π·) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcl 12523 | . . . 4 β’ ((π₯ β β0 β§ π¦ β β0) β (π₯ + π¦) β β0) | |
2 | 1 | adantl 481 | . . 3 β’ (((πΉ β π· β§ πΊ β π·) β§ (π₯ β β0 β§ π¦ β β0)) β (π₯ + π¦) β β0) |
3 | psrbag.d | . . . . 5 β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
4 | 3 | psrbagf 21831 | . . . 4 β’ (πΉ β π· β πΉ:πΌβΆβ0) |
5 | 4 | adantr 480 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β πΉ:πΌβΆβ0) |
6 | 3 | psrbagf 21831 | . . . 4 β’ (πΊ β π· β πΊ:πΌβΆβ0) |
7 | 6 | adantl 481 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β πΊ:πΌβΆβ0) |
8 | simpl 482 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β πΉ β π·) | |
9 | 5 | ffnd 6717 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β πΉ Fn πΌ) |
10 | 8, 9 | fndmexd 7904 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β πΌ β V) |
11 | inidm 4214 | . . 3 β’ (πΌ β© πΌ) = πΌ | |
12 | 2, 5, 7, 10, 10, 11 | off 7695 | . 2 β’ ((πΉ β π· β§ πΊ β π·) β (πΉ βf + πΊ):πΌβΆβ0) |
13 | ovex 7447 | . . . 4 β’ (πΉ βf + πΊ) β V | |
14 | fcdmnn0suppg 12546 | . . . 4 β’ (((πΉ βf + πΊ) β V β§ (πΉ βf + πΊ):πΌβΆβ0) β ((πΉ βf + πΊ) supp 0) = (β‘(πΉ βf + πΊ) β β)) | |
15 | 13, 12, 14 | sylancr 586 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) supp 0) = (β‘(πΉ βf + πΊ) β β)) |
16 | 3 | psrbagfsupp 21833 | . . . . . 6 β’ (πΉ β π· β πΉ finSupp 0) |
17 | 16 | adantr 480 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β πΉ finSupp 0) |
18 | 3 | psrbagfsupp 21833 | . . . . . 6 β’ (πΊ β π· β πΊ finSupp 0) |
19 | 18 | adantl 481 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β πΊ finSupp 0) |
20 | 17, 19 | fsuppunfi 9397 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ supp 0) βͺ (πΊ supp 0)) β Fin) |
21 | 0nn0 12503 | . . . . . 6 β’ 0 β β0 | |
22 | 21 | a1i 11 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β 0 β β0) |
23 | 00id 11405 | . . . . . 6 β’ (0 + 0) = 0 | |
24 | 23 | a1i 11 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β (0 + 0) = 0) |
25 | 10, 22, 5, 7, 24 | suppofssd 8200 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) supp 0) β ((πΉ supp 0) βͺ (πΊ supp 0))) |
26 | 20, 25 | ssfid 9281 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) supp 0) β Fin) |
27 | 15, 26 | eqeltrrd 2829 | . 2 β’ ((πΉ β π· β§ πΊ β π·) β (β‘(πΉ βf + πΊ) β β) β Fin) |
28 | 3 | psrbag 21830 | . . 3 β’ (πΌ β V β ((πΉ βf + πΊ) β π· β ((πΉ βf + πΊ):πΌβΆβ0 β§ (β‘(πΉ βf + πΊ) β β) β Fin))) |
29 | 10, 28 | syl 17 | . 2 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) β π· β ((πΉ βf + πΊ):πΌβΆβ0 β§ (β‘(πΉ βf + πΊ) β β) β Fin))) |
30 | 12, 27, 29 | mpbir2and 712 | 1 β’ ((πΉ β π· β§ πΊ β π·) β (πΉ βf + πΊ) β π·) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 {crab 3427 Vcvv 3469 βͺ cun 3942 class class class wbr 5142 β‘ccnv 5671 β cima 5675 βΆwf 6538 (class class class)co 7414 βf cof 7675 supp csupp 8157 βm cmap 8834 Fincfn 8953 finSupp cfsupp 9375 0cc0 11124 + caddc 11127 βcn 12228 β0cn0 12488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7677 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9376 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-nn 12229 df-n0 12489 |
This theorem is referenced by: mplmon2mul 21991 evlslem1 22006 psdcl 22063 psdmplcl 22064 psdadd 22065 psdvsca 22066 tdeglem3 25967 |
Copyright terms: Public domain | W3C validator |