MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagaddcl Structured version   Visualization version   GIF version

Theorem psrbagaddcl 21967
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.) Shorten proof and remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagaddcl ((𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺) ∈ 𝐷)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑓,𝐺
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagaddcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0addcl 12588 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
21adantl 481 . . 3 (((𝐹𝐷𝐺𝐷) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0)
3 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
43psrbagf 21961 . . . 4 (𝐹𝐷𝐹:𝐼⟶ℕ0)
54adantr 480 . . 3 ((𝐹𝐷𝐺𝐷) → 𝐹:𝐼⟶ℕ0)
63psrbagf 21961 . . . 4 (𝐺𝐷𝐺:𝐼⟶ℕ0)
76adantl 481 . . 3 ((𝐹𝐷𝐺𝐷) → 𝐺:𝐼⟶ℕ0)
8 simpl 482 . . . 4 ((𝐹𝐷𝐺𝐷) → 𝐹𝐷)
95ffnd 6748 . . . 4 ((𝐹𝐷𝐺𝐷) → 𝐹 Fn 𝐼)
108, 9fndmexd 7944 . . 3 ((𝐹𝐷𝐺𝐷) → 𝐼 ∈ V)
11 inidm 4248 . . 3 (𝐼𝐼) = 𝐼
122, 5, 7, 10, 10, 11off 7732 . 2 ((𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺):𝐼⟶ℕ0)
13 ovex 7481 . . . 4 (𝐹f + 𝐺) ∈ V
14 fcdmnn0suppg 12611 . . . 4 (((𝐹f + 𝐺) ∈ V ∧ (𝐹f + 𝐺):𝐼⟶ℕ0) → ((𝐹f + 𝐺) supp 0) = ((𝐹f + 𝐺) “ ℕ))
1513, 12, 14sylancr 586 . . 3 ((𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) supp 0) = ((𝐹f + 𝐺) “ ℕ))
163psrbagfsupp 21962 . . . . . 6 (𝐹𝐷𝐹 finSupp 0)
1716adantr 480 . . . . 5 ((𝐹𝐷𝐺𝐷) → 𝐹 finSupp 0)
183psrbagfsupp 21962 . . . . . 6 (𝐺𝐷𝐺 finSupp 0)
1918adantl 481 . . . . 5 ((𝐹𝐷𝐺𝐷) → 𝐺 finSupp 0)
2017, 19fsuppunfi 9457 . . . 4 ((𝐹𝐷𝐺𝐷) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
21 0nn0 12568 . . . . . 6 0 ∈ ℕ0
2221a1i 11 . . . . 5 ((𝐹𝐷𝐺𝐷) → 0 ∈ ℕ0)
23 00id 11465 . . . . . 6 (0 + 0) = 0
2423a1i 11 . . . . 5 ((𝐹𝐷𝐺𝐷) → (0 + 0) = 0)
2510, 22, 5, 7, 24suppofssd 8244 . . . 4 ((𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
2620, 25ssfid 9329 . . 3 ((𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) supp 0) ∈ Fin)
2715, 26eqeltrrd 2845 . 2 ((𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) “ ℕ) ∈ Fin)
283psrbag 21960 . . 3 (𝐼 ∈ V → ((𝐹f + 𝐺) ∈ 𝐷 ↔ ((𝐹f + 𝐺):𝐼⟶ℕ0 ∧ ((𝐹f + 𝐺) “ ℕ) ∈ Fin)))
2910, 28syl 17 . 2 ((𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) ∈ 𝐷 ↔ ((𝐹f + 𝐺):𝐼⟶ℕ0 ∧ ((𝐹f + 𝐺) “ ℕ) ∈ Fin)))
3012, 27, 29mpbir2and 712 1 ((𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cun 3974   class class class wbr 5166  ccnv 5699  cima 5703  wf 6569  (class class class)co 7448  f cof 7712   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  0cc0 11184   + caddc 11187  cn 12293  0cn0 12553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-nn 12294  df-n0 12554
This theorem is referenced by:  psrbagleadd1  21971  mplmon2mul  22116  evlslem1  22129  psdcl  22188  psdmplcl  22189  psdadd  22190  psdvsca  22191  psdmul  22193  tdeglem3  26118
  Copyright terms: Public domain W3C validator