![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagaddcl | Structured version Visualization version GIF version |
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.) Shorten proof and remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
psrbagaddcl | ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺) ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcl 12559 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0) | |
2 | 1 | adantl 480 | . . 3 ⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) ∧ (𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0) |
3 | psrbag.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
4 | 3 | psrbagf 21915 | . . . 4 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
5 | 4 | adantr 479 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹:𝐼⟶ℕ0) |
6 | 3 | psrbagf 21915 | . . . 4 ⊢ (𝐺 ∈ 𝐷 → 𝐺:𝐼⟶ℕ0) |
7 | 6 | adantl 480 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐺:𝐼⟶ℕ0) |
8 | simpl 481 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 ∈ 𝐷) | |
9 | 5 | ffnd 6729 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 Fn 𝐼) |
10 | 8, 9 | fndmexd 7917 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐼 ∈ V) |
11 | inidm 4220 | . . 3 ⊢ (𝐼 ∩ 𝐼) = 𝐼 | |
12 | 2, 5, 7, 10, 10, 11 | off 7708 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺):𝐼⟶ℕ0) |
13 | ovex 7457 | . . . 4 ⊢ (𝐹 ∘f + 𝐺) ∈ V | |
14 | fcdmnn0suppg 12582 | . . . 4 ⊢ (((𝐹 ∘f + 𝐺) ∈ V ∧ (𝐹 ∘f + 𝐺):𝐼⟶ℕ0) → ((𝐹 ∘f + 𝐺) supp 0) = (◡(𝐹 ∘f + 𝐺) “ ℕ)) | |
15 | 13, 12, 14 | sylancr 585 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) = (◡(𝐹 ∘f + 𝐺) “ ℕ)) |
16 | 3 | psrbagfsupp 21917 | . . . . . 6 ⊢ (𝐹 ∈ 𝐷 → 𝐹 finSupp 0) |
17 | 16 | adantr 479 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐹 finSupp 0) |
18 | 3 | psrbagfsupp 21917 | . . . . . 6 ⊢ (𝐺 ∈ 𝐷 → 𝐺 finSupp 0) |
19 | 18 | adantl 480 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 𝐺 finSupp 0) |
20 | 17, 19 | fsuppunfi 9431 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin) |
21 | 0nn0 12539 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
22 | 21 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → 0 ∈ ℕ0) |
23 | 00id 11439 | . . . . . 6 ⊢ (0 + 0) = 0 | |
24 | 23 | a1i 11 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (0 + 0) = 0) |
25 | 10, 22, 5, 7, 24 | suppofssd 8218 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0))) |
26 | 20, 25 | ssfid 9301 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) supp 0) ∈ Fin) |
27 | 15, 26 | eqeltrrd 2827 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈ Fin) |
28 | 3 | psrbag 21914 | . . 3 ⊢ (𝐼 ∈ V → ((𝐹 ∘f + 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f + 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈ Fin))) |
29 | 10, 28 | syl 17 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → ((𝐹 ∘f + 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f + 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f + 𝐺) “ ℕ) ∈ Fin))) |
30 | 12, 27, 29 | mpbir2and 711 | 1 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷) → (𝐹 ∘f + 𝐺) ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 ∪ cun 3945 class class class wbr 5153 ◡ccnv 5681 “ cima 5685 ⟶wf 6550 (class class class)co 7424 ∘f cof 7688 supp csupp 8174 ↑m cmap 8855 Fincfn 8974 finSupp cfsupp 9405 0cc0 11158 + caddc 11161 ℕcn 12264 ℕ0cn0 12524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-om 7877 df-1st 8003 df-2nd 8004 df-supp 8175 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-map 8857 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-fsupp 9406 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-nn 12265 df-n0 12525 |
This theorem is referenced by: psrbagleadd1 21933 mplmon2mul 22082 evlslem1 22097 psdcl 22155 psdmplcl 22156 psdadd 22157 psdvsca 22158 psdmul 22160 tdeglem3 26084 |
Copyright terms: Public domain | W3C validator |