![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagaddcl | Structured version Visualization version GIF version |
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.) Shorten proof and remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
psrbag.d | β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
Ref | Expression |
---|---|
psrbagaddcl | β’ ((πΉ β π· β§ πΊ β π·) β (πΉ βf + πΊ) β π·) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcl 12503 | . . . 4 β’ ((π₯ β β0 β§ π¦ β β0) β (π₯ + π¦) β β0) | |
2 | 1 | adantl 482 | . . 3 β’ (((πΉ β π· β§ πΊ β π·) β§ (π₯ β β0 β§ π¦ β β0)) β (π₯ + π¦) β β0) |
3 | psrbag.d | . . . . 5 β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
4 | 3 | psrbagf 21462 | . . . 4 β’ (πΉ β π· β πΉ:πΌβΆβ0) |
5 | 4 | adantr 481 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β πΉ:πΌβΆβ0) |
6 | 3 | psrbagf 21462 | . . . 4 β’ (πΊ β π· β πΊ:πΌβΆβ0) |
7 | 6 | adantl 482 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β πΊ:πΌβΆβ0) |
8 | simpl 483 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β πΉ β π·) | |
9 | 5 | ffnd 6715 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β πΉ Fn πΌ) |
10 | 8, 9 | fndmexd 7893 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β πΌ β V) |
11 | inidm 4217 | . . 3 β’ (πΌ β© πΌ) = πΌ | |
12 | 2, 5, 7, 10, 10, 11 | off 7684 | . 2 β’ ((πΉ β π· β§ πΊ β π·) β (πΉ βf + πΊ):πΌβΆβ0) |
13 | ovex 7438 | . . . 4 β’ (πΉ βf + πΊ) β V | |
14 | fcdmnn0suppg 12526 | . . . 4 β’ (((πΉ βf + πΊ) β V β§ (πΉ βf + πΊ):πΌβΆβ0) β ((πΉ βf + πΊ) supp 0) = (β‘(πΉ βf + πΊ) β β)) | |
15 | 13, 12, 14 | sylancr 587 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) supp 0) = (β‘(πΉ βf + πΊ) β β)) |
16 | 3 | psrbagfsupp 21464 | . . . . . 6 β’ (πΉ β π· β πΉ finSupp 0) |
17 | 16 | adantr 481 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β πΉ finSupp 0) |
18 | 3 | psrbagfsupp 21464 | . . . . . 6 β’ (πΊ β π· β πΊ finSupp 0) |
19 | 18 | adantl 482 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β πΊ finSupp 0) |
20 | 17, 19 | fsuppunfi 9379 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ supp 0) βͺ (πΊ supp 0)) β Fin) |
21 | 0nn0 12483 | . . . . . 6 β’ 0 β β0 | |
22 | 21 | a1i 11 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β 0 β β0) |
23 | 00id 11385 | . . . . . 6 β’ (0 + 0) = 0 | |
24 | 23 | a1i 11 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β (0 + 0) = 0) |
25 | 10, 22, 5, 7, 24 | suppofssd 8184 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) supp 0) β ((πΉ supp 0) βͺ (πΊ supp 0))) |
26 | 20, 25 | ssfid 9263 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) supp 0) β Fin) |
27 | 15, 26 | eqeltrrd 2834 | . 2 β’ ((πΉ β π· β§ πΊ β π·) β (β‘(πΉ βf + πΊ) β β) β Fin) |
28 | 3 | psrbag 21461 | . . 3 β’ (πΌ β V β ((πΉ βf + πΊ) β π· β ((πΉ βf + πΊ):πΌβΆβ0 β§ (β‘(πΉ βf + πΊ) β β) β Fin))) |
29 | 10, 28 | syl 17 | . 2 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) β π· β ((πΉ βf + πΊ):πΌβΆβ0 β§ (β‘(πΉ βf + πΊ) β β) β Fin))) |
30 | 12, 27, 29 | mpbir2and 711 | 1 β’ ((πΉ β π· β§ πΊ β π·) β (πΉ βf + πΊ) β π·) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 βͺ cun 3945 class class class wbr 5147 β‘ccnv 5674 β cima 5678 βΆwf 6536 (class class class)co 7405 βf cof 7664 supp csupp 8142 βm cmap 8816 Fincfn 8935 finSupp cfsupp 9357 0cc0 11106 + caddc 11109 βcn 12208 β0cn0 12468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-nn 12209 df-n0 12469 |
This theorem is referenced by: mplmon2mul 21621 evlslem1 21636 tdeglem3 25566 |
Copyright terms: Public domain | W3C validator |