MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagaddcl Structured version   Visualization version   GIF version

Theorem psrbagaddcl 21861
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.) Shorten proof and remove a sethood antecedent. (Revised by SN, 7-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagaddcl ((𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺) ∈ 𝐷)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑓,𝐺
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagaddcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0addcl 12416 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
21adantl 481 . . 3 (((𝐹𝐷𝐺𝐷) ∧ (𝑥 ∈ ℕ0𝑦 ∈ ℕ0)) → (𝑥 + 𝑦) ∈ ℕ0)
3 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
43psrbagf 21855 . . . 4 (𝐹𝐷𝐹:𝐼⟶ℕ0)
54adantr 480 . . 3 ((𝐹𝐷𝐺𝐷) → 𝐹:𝐼⟶ℕ0)
63psrbagf 21855 . . . 4 (𝐺𝐷𝐺:𝐼⟶ℕ0)
76adantl 481 . . 3 ((𝐹𝐷𝐺𝐷) → 𝐺:𝐼⟶ℕ0)
8 simpl 482 . . . 4 ((𝐹𝐷𝐺𝐷) → 𝐹𝐷)
95ffnd 6652 . . . 4 ((𝐹𝐷𝐺𝐷) → 𝐹 Fn 𝐼)
108, 9fndmexd 7834 . . 3 ((𝐹𝐷𝐺𝐷) → 𝐼 ∈ V)
11 inidm 4174 . . 3 (𝐼𝐼) = 𝐼
122, 5, 7, 10, 10, 11off 7628 . 2 ((𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺):𝐼⟶ℕ0)
13 ovex 7379 . . . 4 (𝐹f + 𝐺) ∈ V
14 fcdmnn0suppg 12440 . . . 4 (((𝐹f + 𝐺) ∈ V ∧ (𝐹f + 𝐺):𝐼⟶ℕ0) → ((𝐹f + 𝐺) supp 0) = ((𝐹f + 𝐺) “ ℕ))
1513, 12, 14sylancr 587 . . 3 ((𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) supp 0) = ((𝐹f + 𝐺) “ ℕ))
163psrbagfsupp 21856 . . . . . 6 (𝐹𝐷𝐹 finSupp 0)
1716adantr 480 . . . . 5 ((𝐹𝐷𝐺𝐷) → 𝐹 finSupp 0)
183psrbagfsupp 21856 . . . . . 6 (𝐺𝐷𝐺 finSupp 0)
1918adantl 481 . . . . 5 ((𝐹𝐷𝐺𝐷) → 𝐺 finSupp 0)
2017, 19fsuppunfi 9272 . . . 4 ((𝐹𝐷𝐺𝐷) → ((𝐹 supp 0) ∪ (𝐺 supp 0)) ∈ Fin)
21 0nn0 12396 . . . . . 6 0 ∈ ℕ0
2221a1i 11 . . . . 5 ((𝐹𝐷𝐺𝐷) → 0 ∈ ℕ0)
23 00id 11288 . . . . . 6 (0 + 0) = 0
2423a1i 11 . . . . 5 ((𝐹𝐷𝐺𝐷) → (0 + 0) = 0)
2510, 22, 5, 7, 24suppofssd 8133 . . . 4 ((𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) supp 0) ⊆ ((𝐹 supp 0) ∪ (𝐺 supp 0)))
2620, 25ssfid 9153 . . 3 ((𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) supp 0) ∈ Fin)
2715, 26eqeltrrd 2832 . 2 ((𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) “ ℕ) ∈ Fin)
283psrbag 21854 . . 3 (𝐼 ∈ V → ((𝐹f + 𝐺) ∈ 𝐷 ↔ ((𝐹f + 𝐺):𝐼⟶ℕ0 ∧ ((𝐹f + 𝐺) “ ℕ) ∈ Fin)))
2910, 28syl 17 . 2 ((𝐹𝐷𝐺𝐷) → ((𝐹f + 𝐺) ∈ 𝐷 ↔ ((𝐹f + 𝐺):𝐼⟶ℕ0 ∧ ((𝐹f + 𝐺) “ ℕ) ∈ Fin)))
3012, 27, 29mpbir2and 713 1 ((𝐹𝐷𝐺𝐷) → (𝐹f + 𝐺) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cun 3895   class class class wbr 5089  ccnv 5613  cima 5617  wf 6477  (class class class)co 7346  f cof 7608   supp csupp 8090  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245  0cc0 11006   + caddc 11009  cn 12125  0cn0 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-nn 12126  df-n0 12382
This theorem is referenced by:  psrbagleadd1  21865  mplmon2mul  22004  evlslem1  22017  psdcl  22076  psdmplcl  22077  psdadd  22078  psdvsca  22079  psdmul  22081  psdmvr  22084  tdeglem3  25991
  Copyright terms: Public domain W3C validator