![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagaddcl | Structured version Visualization version GIF version |
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015.) Shorten proof and remove a sethood antecedent. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
psrbag.d | β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
Ref | Expression |
---|---|
psrbagaddcl | β’ ((πΉ β π· β§ πΊ β π·) β (πΉ βf + πΊ) β π·) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcl 12535 | . . . 4 β’ ((π₯ β β0 β§ π¦ β β0) β (π₯ + π¦) β β0) | |
2 | 1 | adantl 480 | . . 3 β’ (((πΉ β π· β§ πΊ β π·) β§ (π₯ β β0 β§ π¦ β β0)) β (π₯ + π¦) β β0) |
3 | psrbag.d | . . . . 5 β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
4 | 3 | psrbagf 21853 | . . . 4 β’ (πΉ β π· β πΉ:πΌβΆβ0) |
5 | 4 | adantr 479 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β πΉ:πΌβΆβ0) |
6 | 3 | psrbagf 21853 | . . . 4 β’ (πΊ β π· β πΊ:πΌβΆβ0) |
7 | 6 | adantl 480 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β πΊ:πΌβΆβ0) |
8 | simpl 481 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β πΉ β π·) | |
9 | 5 | ffnd 6717 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β πΉ Fn πΌ) |
10 | 8, 9 | fndmexd 7908 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β πΌ β V) |
11 | inidm 4213 | . . 3 β’ (πΌ β© πΌ) = πΌ | |
12 | 2, 5, 7, 10, 10, 11 | off 7699 | . 2 β’ ((πΉ β π· β§ πΊ β π·) β (πΉ βf + πΊ):πΌβΆβ0) |
13 | ovex 7448 | . . . 4 β’ (πΉ βf + πΊ) β V | |
14 | fcdmnn0suppg 12558 | . . . 4 β’ (((πΉ βf + πΊ) β V β§ (πΉ βf + πΊ):πΌβΆβ0) β ((πΉ βf + πΊ) supp 0) = (β‘(πΉ βf + πΊ) β β)) | |
15 | 13, 12, 14 | sylancr 585 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) supp 0) = (β‘(πΉ βf + πΊ) β β)) |
16 | 3 | psrbagfsupp 21855 | . . . . . 6 β’ (πΉ β π· β πΉ finSupp 0) |
17 | 16 | adantr 479 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β πΉ finSupp 0) |
18 | 3 | psrbagfsupp 21855 | . . . . . 6 β’ (πΊ β π· β πΊ finSupp 0) |
19 | 18 | adantl 480 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β πΊ finSupp 0) |
20 | 17, 19 | fsuppunfi 9409 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ supp 0) βͺ (πΊ supp 0)) β Fin) |
21 | 0nn0 12515 | . . . . . 6 β’ 0 β β0 | |
22 | 21 | a1i 11 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β 0 β β0) |
23 | 00id 11417 | . . . . . 6 β’ (0 + 0) = 0 | |
24 | 23 | a1i 11 | . . . . 5 β’ ((πΉ β π· β§ πΊ β π·) β (0 + 0) = 0) |
25 | 10, 22, 5, 7, 24 | suppofssd 8205 | . . . 4 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) supp 0) β ((πΉ supp 0) βͺ (πΊ supp 0))) |
26 | 20, 25 | ssfid 9288 | . . 3 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) supp 0) β Fin) |
27 | 15, 26 | eqeltrrd 2826 | . 2 β’ ((πΉ β π· β§ πΊ β π·) β (β‘(πΉ βf + πΊ) β β) β Fin) |
28 | 3 | psrbag 21852 | . . 3 β’ (πΌ β V β ((πΉ βf + πΊ) β π· β ((πΉ βf + πΊ):πΌβΆβ0 β§ (β‘(πΉ βf + πΊ) β β) β Fin))) |
29 | 10, 28 | syl 17 | . 2 β’ ((πΉ β π· β§ πΊ β π·) β ((πΉ βf + πΊ) β π· β ((πΉ βf + πΊ):πΌβΆβ0 β§ (β‘(πΉ βf + πΊ) β β) β Fin))) |
30 | 12, 27, 29 | mpbir2and 711 | 1 β’ ((πΉ β π· β§ πΊ β π·) β (πΉ βf + πΊ) β π·) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 {crab 3419 Vcvv 3463 βͺ cun 3938 class class class wbr 5143 β‘ccnv 5671 β cima 5675 βΆwf 6538 (class class class)co 7415 βf cof 7679 supp csupp 8161 βm cmap 8841 Fincfn 8960 finSupp cfsupp 9383 0cc0 11136 + caddc 11139 βcn 12240 β0cn0 12500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-nn 12241 df-n0 12501 |
This theorem is referenced by: psrbagleadd1 21871 mplmon2mul 22018 evlslem1 22033 psdcl 22091 psdmplcl 22092 psdadd 22093 psdvsca 22094 psdmul 22096 tdeglem3 26009 |
Copyright terms: Public domain | W3C validator |