MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lem Structured version   Visualization version   GIF version

Theorem psrass1lem 20157
Description: A group sum commutation used by psrass1 20185. (Contributed by Mario Carneiro, 5-Jan-2015.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.1 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiag.i (𝜑𝐼𝑉)
gsumbagdiag.f (𝜑𝐹𝐷)
gsumbagdiag.b 𝐵 = (Base‘𝐺)
gsumbagdiag.g (𝜑𝐺 ∈ CMnd)
gsumbagdiag.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
psrass1lem.y (𝑘 = (𝑛f𝑗) → 𝑋 = 𝑌)
Assertion
Ref Expression
psrass1lem (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))))
Distinct variable groups:   𝑓,𝑗,𝑘,𝑛,𝑥,𝑦,𝐹   𝑓,𝐺,𝑗,𝑘,𝑛,𝑥,𝑦   𝑛,𝑉,𝑥,𝑦   𝑓,𝐼,𝑛,𝑥,𝑦   𝜑,𝑗,𝑘   𝑆,𝑗,𝑘,𝑛,𝑥   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘,𝑛,𝑥,𝑦   𝑓,𝑋,𝑛,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑛)   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑗,𝑘)   𝑉(𝑓,𝑗,𝑘)   𝑋(𝑗,𝑘)   𝑌(𝑗,𝑛)

Proof of Theorem psrass1lem
Dummy variables 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 psrbagconf1o.1 . . . 4 𝑆 = {𝑦𝐷𝑦r𝐹}
3 gsumbagdiag.i . . . 4 (𝜑𝐼𝑉)
4 gsumbagdiag.f . . . 4 (𝜑𝐹𝐷)
5 gsumbagdiag.b . . . 4 𝐵 = (Base‘𝐺)
6 gsumbagdiag.g . . . 4 (𝜑𝐺 ∈ CMnd)
71, 2, 3, 4gsumbagdiaglem 20155 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}))
8 gsumbagdiag.x . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
98anassrs 470 . . . . . . . . . 10 (((𝜑𝑗𝑆) ∧ 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑋𝐵)
109fmpttd 6879 . . . . . . . . 9 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
113adantr 483 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → 𝐼𝑉)
122ssrab3 4057 . . . . . . . . . . . 12 𝑆𝐷
134adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑗𝑆) → 𝐹𝐷)
14 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑗𝑆) → 𝑗𝑆)
151, 2psrbagconcl 20153 . . . . . . . . . . . . 13 ((𝐼𝑉𝐹𝐷𝑗𝑆) → (𝐹f𝑗) ∈ 𝑆)
1611, 13, 14, 15syl3anc 1367 . . . . . . . . . . . 12 ((𝜑𝑗𝑆) → (𝐹f𝑗) ∈ 𝑆)
1712, 16sseldi 3965 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝐹f𝑗) ∈ 𝐷)
18 eqid 2821 . . . . . . . . . . . 12 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} = {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
191, 18psrbagconf1o 20154 . . . . . . . . . . 11 ((𝐼𝑉 ∧ (𝐹f𝑗) ∈ 𝐷) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
2011, 17, 19syl2anc 586 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
21 f1of 6615 . . . . . . . . . 10 ((𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)} → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
2220, 21syl 17 . . . . . . . . 9 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
23 fco 6531 . . . . . . . . 9 (((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵 ∧ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
2410, 22, 23syl2anc 586 . . . . . . . 8 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
2511adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐼𝑉)
2613adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹𝐷)
271psrbagf 20145 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2825, 26, 27syl2anc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹:𝐼⟶ℕ0)
2928ffvelrnda 6851 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
3014adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗𝑆)
3112, 30sseldi 3965 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗𝐷)
321psrbagf 20145 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑗𝐷) → 𝑗:𝐼⟶ℕ0)
3325, 31, 32syl2anc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗:𝐼⟶ℕ0)
3433ffvelrnda 6851 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
35 ssrab2 4056 . . . . . . . . . . . . . . . . 17 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ⊆ 𝐷
36 simpr 487 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
3735, 36sseldi 3965 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚𝐷)
381psrbagf 20145 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑚𝐷) → 𝑚:𝐼⟶ℕ0)
3925, 37, 38syl2anc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚:𝐼⟶ℕ0)
4039ffvelrnda 6851 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝑚𝑧) ∈ ℕ0)
41 nn0cn 11908 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℂ)
42 nn0cn 11908 . . . . . . . . . . . . . . 15 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
43 nn0cn 11908 . . . . . . . . . . . . . . 15 ((𝑚𝑧) ∈ ℕ0 → (𝑚𝑧) ∈ ℂ)
44 sub32 10920 . . . . . . . . . . . . . . 15 (((𝐹𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ ∧ (𝑚𝑧) ∈ ℂ) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4541, 42, 43, 44syl3an 1156 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0 ∧ (𝑚𝑧) ∈ ℕ0) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4629, 34, 40, 45syl3anc 1367 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4746mpteq2dva 5161 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
48 ovexd 7191 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑗𝑧)) ∈ V)
4928feqmptd 6733 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹 = (𝑧𝐼 ↦ (𝐹𝑧)))
5033feqmptd 6733 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
5125, 29, 34, 49, 50offval2 7426 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑗) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑗𝑧))))
5239feqmptd 6733 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 = (𝑧𝐼 ↦ (𝑚𝑧)))
5325, 48, 40, 51, 52offval2 7426 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))))
54 ovexd 7191 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑚𝑧)) ∈ V)
5525, 29, 40, 49, 52offval2 7426 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑚) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑚𝑧))))
5625, 54, 34, 55, 50offval2 7426 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
5747, 53, 563eqtr4d 2866 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) = ((𝐹f𝑚) ∘f𝑗))
5817adantr 483 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑗) ∈ 𝐷)
591, 18psrbagconcl 20153 . . . . . . . . . . . 12 ((𝐼𝑉 ∧ (𝐹f𝑗) ∈ 𝐷𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
6025, 58, 36, 59syl3anc 1367 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
6157, 60eqeltrrd 2914 . . . . . . . . . 10 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
6257mpteq2dva 5161 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)) = (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗)))
63 nfcv 2977 . . . . . . . . . . . 12 𝑛𝑋
64 nfcsb1v 3907 . . . . . . . . . . . 12 𝑘𝑛 / 𝑘𝑋
65 csbeq1a 3897 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑋 = 𝑛 / 𝑘𝑋)
6663, 64, 65cbvmpt 5167 . . . . . . . . . . 11 (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑛 / 𝑘𝑋)
6766a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑛 / 𝑘𝑋))
68 csbeq1 3886 . . . . . . . . . 10 (𝑛 = ((𝐹f𝑚) ∘f𝑗) → 𝑛 / 𝑘𝑋 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
6961, 62, 67, 68fmptco 6891 . . . . . . . . 9 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))) = (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
7069feq1d 6499 . . . . . . . 8 ((𝜑𝑗𝑆) → (((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵 ↔ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵))
7124, 70mpbid 234 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
7271fvmptelrn 6877 . . . . . 6 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
7372anasss 469 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
747, 73syldan 593 . . . 4 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
751, 2, 3, 4, 5, 6, 74gsumbagdiag 20156 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
76 eqid 2821 . . . 4 (0g𝐺) = (0g𝐺)
771psrbaglefi 20152 . . . . . 6 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦r𝐹} ∈ Fin)
783, 4, 77syl2anc 586 . . . . 5 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
792, 78eqeltrid 2917 . . . 4 (𝜑𝑆 ∈ Fin)
803adantr 483 . . . . 5 ((𝜑𝑚𝑆) → 𝐼𝑉)
814adantr 483 . . . . . . 7 ((𝜑𝑚𝑆) → 𝐹𝐷)
82 simpr 487 . . . . . . 7 ((𝜑𝑚𝑆) → 𝑚𝑆)
831, 2psrbagconcl 20153 . . . . . . 7 ((𝐼𝑉𝐹𝐷𝑚𝑆) → (𝐹f𝑚) ∈ 𝑆)
8480, 81, 82, 83syl3anc 1367 . . . . . 6 ((𝜑𝑚𝑆) → (𝐹f𝑚) ∈ 𝑆)
8512, 84sseldi 3965 . . . . 5 ((𝜑𝑚𝑆) → (𝐹f𝑚) ∈ 𝐷)
861psrbaglefi 20152 . . . . 5 ((𝐼𝑉 ∧ (𝐹f𝑚) ∈ 𝐷) → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin)
8780, 85, 86syl2anc 586 . . . 4 ((𝜑𝑚𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin)
88 xpfi 8789 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
8979, 79, 88syl2anc 586 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
90 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑚𝑆)
917simpld 497 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑗𝑆)
92 brxp 5601 . . . . . . 7 (𝑚(𝑆 × 𝑆)𝑗 ↔ (𝑚𝑆𝑗𝑆))
9390, 91, 92sylanbrc 585 . . . . . 6 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑚(𝑆 × 𝑆)𝑗)
9493pm2.24d 154 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (¬ 𝑚(𝑆 × 𝑆)𝑗((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺)))
9594impr 457 . . . 4 ((𝜑 ∧ ((𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}) ∧ ¬ 𝑚(𝑆 × 𝑆)𝑗)) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺))
965, 76, 6, 79, 87, 74, 89, 95gsum2d2 19094 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
971psrbaglefi 20152 . . . . 5 ((𝐼𝑉 ∧ (𝐹f𝑗) ∈ 𝐷) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin)
9811, 17, 97syl2anc 586 . . . 4 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin)
99 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗𝑆)
1001, 2, 3, 4gsumbagdiaglem 20155 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}))
101100simpld 497 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑚𝑆)
102 brxp 5601 . . . . . . 7 (𝑗(𝑆 × 𝑆)𝑚 ↔ (𝑗𝑆𝑚𝑆))
10399, 101, 102sylanbrc 585 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗(𝑆 × 𝑆)𝑚)
104103pm2.24d 154 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑚((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺)))
105104impr 457 . . . 4 ((𝜑 ∧ ((𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑚)) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺))
1065, 76, 6, 79, 98, 73, 89, 105gsum2d2 19094 . . 3 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
10775, 96, 1063eqtr3d 2864 . 2 (𝜑 → (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
1086adantr 483 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝐺 ∈ CMnd)
10974anassrs 470 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
110109fmpttd 6879 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑚)}⟶𝐵)
111 ovex 7189 . . . . . . . . . . . 12 (ℕ0m 𝐼) ∈ V
1121, 111rabex2 5237 . . . . . . . . . . 11 𝐷 ∈ V
113112a1i 11 . . . . . . . . . 10 ((𝜑𝑚𝑆) → 𝐷 ∈ V)
114 rabexg 5234 . . . . . . . . . 10 (𝐷 ∈ V → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ V)
115 mptexg 6984 . . . . . . . . . 10 ({𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ V → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V)
116113, 114, 1153syl 18 . . . . . . . . 9 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V)
117 funmpt 6393 . . . . . . . . . 10 Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
118117a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
119 fvexd 6685 . . . . . . . . 9 ((𝜑𝑚𝑆) → (0g𝐺) ∈ V)
120 suppssdm 7843 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ dom (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
121 eqid 2821 . . . . . . . . . . . 12 (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) = (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
122121dmmptss 6095 . . . . . . . . . . 11 dom (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}
123120, 122sstri 3976 . . . . . . . . . 10 ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}
124123a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})
125 suppssfifsupp 8848 . . . . . . . . 9 ((((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) finSupp (0g𝐺))
126116, 118, 119, 87, 124, 125syl32anc 1374 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) finSupp (0g𝐺))
1275, 76, 108, 87, 110, 126gsumcl 19035 . . . . . . 7 ((𝜑𝑚𝑆) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) ∈ 𝐵)
128127fmpttd 6879 . . . . . 6 (𝜑 → (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))):𝑆𝐵)
1291, 2psrbagconf1o 20154 . . . . . . . 8 ((𝐼𝑉𝐹𝐷) → (𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
1303, 4, 129syl2anc 586 . . . . . . 7 (𝜑 → (𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
131 f1ocnv 6627 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
132 f1of 6615 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆)
133130, 131, 1323syl 18 . . . . . 6 (𝜑(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆)
134 fco 6531 . . . . . 6 (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))):𝑆𝐵(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆) → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵)
135128, 133, 134syl2anc 586 . . . . 5 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵)
136 coass 6118 . . . . . . . 8 (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))))
137 f1ococnv2 6641 . . . . . . . . . 10 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆 → ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ( I ↾ 𝑆))
138130, 137syl 17 . . . . . . . . 9 (𝜑 → ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ( I ↾ 𝑆))
139138coeq2d 5733 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
140136, 139syl5eq 2868 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
141 eqidd 2822 . . . . . . . . 9 (𝜑 → (𝑚𝑆 ↦ (𝐹f𝑚)) = (𝑚𝑆 ↦ (𝐹f𝑚)))
142 eqidd 2822 . . . . . . . . 9 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
143 breq2 5070 . . . . . . . . . . . 12 (𝑛 = (𝐹f𝑚) → (𝑥r𝑛𝑥r ≤ (𝐹f𝑚)))
144143rabbidv 3480 . . . . . . . . . . 11 (𝑛 = (𝐹f𝑚) → {𝑥𝐷𝑥r𝑛} = {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})
145 ovex 7189 . . . . . . . . . . . . 13 (𝑛f𝑗) ∈ V
146 psrass1lem.y . . . . . . . . . . . . 13 (𝑘 = (𝑛f𝑗) → 𝑋 = 𝑌)
147145, 146csbie 3918 . . . . . . . . . . . 12 (𝑛f𝑗) / 𝑘𝑋 = 𝑌
148 oveq1 7163 . . . . . . . . . . . . 13 (𝑛 = (𝐹f𝑚) → (𝑛f𝑗) = ((𝐹f𝑚) ∘f𝑗))
149148csbeq1d 3887 . . . . . . . . . . . 12 (𝑛 = (𝐹f𝑚) → (𝑛f𝑗) / 𝑘𝑋 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
150147, 149syl5eqr 2870 . . . . . . . . . . 11 (𝑛 = (𝐹f𝑚) → 𝑌 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
151144, 150mpteq12dv 5151 . . . . . . . . . 10 (𝑛 = (𝐹f𝑚) → (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌) = (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
152151oveq2d 7172 . . . . . . . . 9 (𝑛 = (𝐹f𝑚) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)) = (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
15384, 141, 142, 152fmptco 6891 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))))
154153coeq1d 5732 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))))
155 coires1 6117 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆)
156 ssid 3989 . . . . . . . . . 10 𝑆𝑆
157 resmpt 5905 . . . . . . . . . 10 (𝑆𝑆 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
158156, 157ax-mp 5 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
159155, 158eqtri 2844 . . . . . . . 8 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
160159a1i 11 . . . . . . 7 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
161140, 154, 1603eqtr3d 2864 . . . . . 6 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
162161feq1d 6499 . . . . 5 (𝜑 → (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵 ↔ (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))):𝑆𝐵))
163135, 162mpbid 234 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))):𝑆𝐵)
164 rabexg 5234 . . . . . . . 8 (𝐷 ∈ V → {𝑦𝐷𝑦r𝐹} ∈ V)
165112, 164mp1i 13 . . . . . . 7 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ V)
1662, 165eqeltrid 2917 . . . . . 6 (𝜑𝑆 ∈ V)
167166mptexd 6987 . . . . 5 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∈ V)
168 funmpt 6393 . . . . . 6 Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
169168a1i 11 . . . . 5 (𝜑 → Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
170 fvexd 6685 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
171 suppssdm 7843 . . . . . . 7 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
172 eqid 2821 . . . . . . . 8 (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
173172dmmptss 6095 . . . . . . 7 dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ⊆ 𝑆
174171, 173sstri 3976 . . . . . 6 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆
175174a1i 11 . . . . 5 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)
176 suppssfifsupp 8848 . . . . 5 ((((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∈ V ∧ Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∧ (0g𝐺) ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)) → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) finSupp (0g𝐺))
177167, 169, 170, 79, 175, 176syl32anc 1374 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) finSupp (0g𝐺))
1785, 76, 6, 79, 163, 177, 130gsumf1o 19036 . . 3 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))))
179153oveq2d 7172 . . 3 (𝜑 → (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
180178, 179eqtrd 2856 . 2 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
1816adantr 483 . . . . . 6 ((𝜑𝑗𝑆) → 𝐺 ∈ CMnd)
182112a1i 11 . . . . . . . 8 ((𝜑𝑗𝑆) → 𝐷 ∈ V)
183 rabexg 5234 . . . . . . . 8 (𝐷 ∈ V → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V)
184 mptexg 6984 . . . . . . . 8 ({𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V)
185182, 183, 1843syl 18 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V)
186 funmpt 6393 . . . . . . . 8 Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
187186a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋))
188 fvexd 6685 . . . . . . 7 ((𝜑𝑗𝑆) → (0g𝐺) ∈ V)
189 suppssdm 7843 . . . . . . . . 9 ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ dom (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
190 eqid 2821 . . . . . . . . . 10 (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
191190dmmptss 6095 . . . . . . . . 9 dom (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
192189, 191sstri 3976 . . . . . . . 8 ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
193192a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
194 suppssfifsupp 8848 . . . . . . 7 ((((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V ∧ Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin ∧ ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) finSupp (0g𝐺))
195185, 187, 188, 98, 193, 194syl32anc 1374 . . . . . 6 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) finSupp (0g𝐺))
1965, 76, 181, 98, 10, 195, 20gsumf1o 19036 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)))))
19769oveq2d 7172 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)))) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
198196, 197eqtrd 2856 . . . 4 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
199198mpteq2dva 5161 . . 3 (𝜑 → (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋))) = (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))))
200199oveq2d 7172 . 2 (𝜑 → (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
201107, 180, 2003eqtr4d 2866 1 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  csb 3883  wss 3936   class class class wbr 5066  cmpt 5146   I cid 5459   × cxp 5553  ccnv 5554  dom cdm 5555  cres 5557  cima 5558  ccom 5559  Fun wfun 6349  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  cmpo 7158  f cof 7407  r cofr 7408   supp csupp 7830  m cmap 8406  Fincfn 8509   finSupp cfsupp 8833  cc 10535  cle 10676  cmin 10870  cn 11638  0cn0 11898  Basecbs 16483  0gc0g 16713   Σg cgsu 16714  CMndccmn 18906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908
This theorem is referenced by:  psrass1  20185
  Copyright terms: Public domain W3C validator