MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lem Structured version   Visualization version   GIF version

Theorem psrass1lem 21155
Description: A group sum commutation used by psrass1 21183. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
gsumbagdiag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
gsumbagdiag.s 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiag.f (𝜑𝐹𝐷)
gsumbagdiag.b 𝐵 = (Base‘𝐺)
gsumbagdiag.g (𝜑𝐺 ∈ CMnd)
gsumbagdiag.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
psrass1lem.y (𝑘 = (𝑛f𝑗) → 𝑋 = 𝑌)
Assertion
Ref Expression
psrass1lem (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))))
Distinct variable groups:   𝑥,𝐷   𝑦,𝐷   𝑓,𝐹,𝑥   𝑦,𝐹   𝑓,𝐼   𝑓,𝑋,𝑥   𝑦,𝑋   𝑓,𝑌,𝑥   𝑦,𝑌   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝑦,𝐼,𝑓   𝑆,𝑗,𝑘   𝜑,𝑗,𝑘   𝑓,𝑗,𝑘,𝑦   𝑥,𝑗,𝑘   𝐷,𝑛,𝑗,𝑘,𝑥   𝑥,𝑓   𝑛,𝐹   𝑛,𝐺   𝑥,𝐼   𝑆,𝑛   𝑛,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑛)   𝐷(𝑓)   𝑆(𝑥,𝑦,𝑓)   𝐺(𝑥,𝑦,𝑓)   𝐼(𝑗,𝑘,𝑛)   𝑋(𝑗,𝑘)   𝑌(𝑗,𝑛)

Proof of Theorem psrass1lem
Dummy variables 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumbagdiag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 gsumbagdiag.s . . . 4 𝑆 = {𝑦𝐷𝑦r𝐹}
3 gsumbagdiag.f . . . 4 (𝜑𝐹𝐷)
4 gsumbagdiag.b . . . 4 𝐵 = (Base‘𝐺)
5 gsumbagdiag.g . . . 4 (𝜑𝐺 ∈ CMnd)
61, 2, 3gsumbagdiaglem 21153 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}))
7 gsumbagdiag.x . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
87anassrs 468 . . . . . . . . . 10 (((𝜑𝑗𝑆) ∧ 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑋𝐵)
98fmpttd 6998 . . . . . . . . 9 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
102ssrab3 4016 . . . . . . . . . . . 12 𝑆𝐷
111, 2psrbagconcl 21146 . . . . . . . . . . . . 13 ((𝐹𝐷𝑗𝑆) → (𝐹f𝑗) ∈ 𝑆)
123, 11sylan 580 . . . . . . . . . . . 12 ((𝜑𝑗𝑆) → (𝐹f𝑗) ∈ 𝑆)
1310, 12sselid 3920 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝐹f𝑗) ∈ 𝐷)
14 eqid 2739 . . . . . . . . . . . 12 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} = {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
151, 14psrbagconf1o 21148 . . . . . . . . . . 11 ((𝐹f𝑗) ∈ 𝐷 → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
1613, 15syl 17 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
17 f1of 6725 . . . . . . . . . 10 ((𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)} → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
1816, 17syl 17 . . . . . . . . 9 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
199, 18fcod 6635 . . . . . . . 8 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
203adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑆) → 𝐹𝐷)
2120adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹𝐷)
221psrbagf 21130 . . . . . . . . . . . . . . . 16 (𝐹𝐷𝐹:𝐼⟶ℕ0)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹:𝐼⟶ℕ0)
2423ffvelrnda 6970 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
25 simplr 766 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗𝑆)
2610, 25sselid 3920 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗𝐷)
271psrbagf 21130 . . . . . . . . . . . . . . . 16 (𝑗𝐷𝑗:𝐼⟶ℕ0)
2826, 27syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗:𝐼⟶ℕ0)
2928ffvelrnda 6970 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
30 ssrab2 4014 . . . . . . . . . . . . . . . . 17 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ⊆ 𝐷
31 simpr 485 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
3230, 31sselid 3920 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚𝐷)
331psrbagf 21130 . . . . . . . . . . . . . . . 16 (𝑚𝐷𝑚:𝐼⟶ℕ0)
3432, 33syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚:𝐼⟶ℕ0)
3534ffvelrnda 6970 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝑚𝑧) ∈ ℕ0)
36 nn0cn 12252 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℂ)
37 nn0cn 12252 . . . . . . . . . . . . . . 15 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
38 nn0cn 12252 . . . . . . . . . . . . . . 15 ((𝑚𝑧) ∈ ℕ0 → (𝑚𝑧) ∈ ℂ)
39 sub32 11264 . . . . . . . . . . . . . . 15 (((𝐹𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ ∧ (𝑚𝑧) ∈ ℂ) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4036, 37, 38, 39syl3an 1159 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0 ∧ (𝑚𝑧) ∈ ℕ0) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4124, 29, 35, 40syl3anc 1370 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4241mpteq2dva 5175 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
4334ffnd 6610 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 Fn 𝐼)
4431, 43fndmexd 7762 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐼 ∈ V)
45 ovexd 7319 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑗𝑧)) ∈ V)
4623feqmptd 6846 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹 = (𝑧𝐼 ↦ (𝐹𝑧)))
4728feqmptd 6846 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
4844, 24, 29, 46, 47offval2 7562 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑗) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑗𝑧))))
4934feqmptd 6846 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 = (𝑧𝐼 ↦ (𝑚𝑧)))
5044, 45, 35, 48, 49offval2 7562 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))))
51 ovexd 7319 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑚𝑧)) ∈ V)
5244, 24, 35, 46, 49offval2 7562 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑚) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑚𝑧))))
5344, 51, 29, 52, 47offval2 7562 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
5442, 50, 533eqtr4d 2789 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) = ((𝐹f𝑚) ∘f𝑗))
551, 14psrbagconcl 21146 . . . . . . . . . . . 12 (((𝐹f𝑗) ∈ 𝐷𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
5613, 55sylan 580 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
5754, 56eqeltrrd 2841 . . . . . . . . . 10 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
5854mpteq2dva 5175 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)) = (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗)))
59 nfcv 2908 . . . . . . . . . . . 12 𝑛𝑋
60 nfcsb1v 3858 . . . . . . . . . . . 12 𝑘𝑛 / 𝑘𝑋
61 csbeq1a 3847 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑋 = 𝑛 / 𝑘𝑋)
6259, 60, 61cbvmpt 5186 . . . . . . . . . . 11 (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑛 / 𝑘𝑋)
6362a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑛 / 𝑘𝑋))
64 csbeq1 3836 . . . . . . . . . 10 (𝑛 = ((𝐹f𝑚) ∘f𝑗) → 𝑛 / 𝑘𝑋 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
6557, 58, 63, 64fmptco 7010 . . . . . . . . 9 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))) = (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
6665feq1d 6594 . . . . . . . 8 ((𝜑𝑗𝑆) → (((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵 ↔ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵))
6719, 66mpbid 231 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
6867fvmptelrn 6996 . . . . . 6 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
6968anasss 467 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
706, 69syldan 591 . . . 4 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
711, 2, 3, 4, 5, 70gsumbagdiag 21154 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
72 eqid 2739 . . . 4 (0g𝐺) = (0g𝐺)
731psrbaglefi 21144 . . . . . 6 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
743, 73syl 17 . . . . 5 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
752, 74eqeltrid 2844 . . . 4 (𝜑𝑆 ∈ Fin)
761, 2psrbagconcl 21146 . . . . . . 7 ((𝐹𝐷𝑚𝑆) → (𝐹f𝑚) ∈ 𝑆)
773, 76sylan 580 . . . . . 6 ((𝜑𝑚𝑆) → (𝐹f𝑚) ∈ 𝑆)
7810, 77sselid 3920 . . . . 5 ((𝜑𝑚𝑆) → (𝐹f𝑚) ∈ 𝐷)
791psrbaglefi 21144 . . . . 5 ((𝐹f𝑚) ∈ 𝐷 → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin)
8078, 79syl 17 . . . 4 ((𝜑𝑚𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin)
81 xpfi 9094 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
8275, 75, 81syl2anc 584 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
83 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑚𝑆)
846simpld 495 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑗𝑆)
85 brxp 5637 . . . . . . 7 (𝑚(𝑆 × 𝑆)𝑗 ↔ (𝑚𝑆𝑗𝑆))
8683, 84, 85sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑚(𝑆 × 𝑆)𝑗)
8786pm2.24d 151 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (¬ 𝑚(𝑆 × 𝑆)𝑗((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺)))
8887impr 455 . . . 4 ((𝜑 ∧ ((𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}) ∧ ¬ 𝑚(𝑆 × 𝑆)𝑗)) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺))
894, 72, 5, 75, 80, 70, 82, 88gsum2d2 19584 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
901psrbaglefi 21144 . . . . 5 ((𝐹f𝑗) ∈ 𝐷 → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin)
9113, 90syl 17 . . . 4 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin)
92 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗𝑆)
931, 2, 3gsumbagdiaglem 21153 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}))
9493simpld 495 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑚𝑆)
95 brxp 5637 . . . . . . 7 (𝑗(𝑆 × 𝑆)𝑚 ↔ (𝑗𝑆𝑚𝑆))
9692, 94, 95sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗(𝑆 × 𝑆)𝑚)
9796pm2.24d 151 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑚((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺)))
9897impr 455 . . . 4 ((𝜑 ∧ ((𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑚)) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺))
994, 72, 5, 75, 91, 69, 82, 98gsum2d2 19584 . . 3 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
10071, 89, 993eqtr3d 2787 . 2 (𝜑 → (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
1015adantr 481 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝐺 ∈ CMnd)
10270anassrs 468 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
103102fmpttd 6998 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑚)}⟶𝐵)
104 ovex 7317 . . . . . . . . . . . 12 (ℕ0m 𝐼) ∈ V
1051, 104rabex2 5259 . . . . . . . . . . 11 𝐷 ∈ V
106105a1i 11 . . . . . . . . . 10 ((𝜑𝑚𝑆) → 𝐷 ∈ V)
107 rabexg 5256 . . . . . . . . . 10 (𝐷 ∈ V → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ V)
108 mptexg 7106 . . . . . . . . . 10 ({𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ V → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V)
109106, 107, 1083syl 18 . . . . . . . . 9 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V)
110 funmpt 6479 . . . . . . . . . 10 Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
111110a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
112 fvexd 6798 . . . . . . . . 9 ((𝜑𝑚𝑆) → (0g𝐺) ∈ V)
113 suppssdm 8002 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ dom (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
114 eqid 2739 . . . . . . . . . . . 12 (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) = (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
115114dmmptss 6149 . . . . . . . . . . 11 dom (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}
116113, 115sstri 3931 . . . . . . . . . 10 ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}
117116a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})
118 suppssfifsupp 9152 . . . . . . . . 9 ((((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) finSupp (0g𝐺))
119109, 111, 112, 80, 117, 118syl32anc 1377 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) finSupp (0g𝐺))
1204, 72, 101, 80, 103, 119gsumcl 19525 . . . . . . 7 ((𝜑𝑚𝑆) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) ∈ 𝐵)
121120fmpttd 6998 . . . . . 6 (𝜑 → (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))):𝑆𝐵)
1221, 2psrbagconf1o 21148 . . . . . . . 8 (𝐹𝐷 → (𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
1233, 122syl 17 . . . . . . 7 (𝜑 → (𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
124 f1ocnv 6737 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
125 f1of 6725 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆)
126123, 124, 1253syl 18 . . . . . 6 (𝜑(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆)
127121, 126fcod 6635 . . . . 5 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵)
128 coass 6173 . . . . . . . 8 (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))))
129 f1ococnv2 6752 . . . . . . . . . 10 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆 → ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ( I ↾ 𝑆))
130123, 129syl 17 . . . . . . . . 9 (𝜑 → ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ( I ↾ 𝑆))
131130coeq2d 5774 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
132128, 131eqtrid 2791 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
133 eqidd 2740 . . . . . . . . 9 (𝜑 → (𝑚𝑆 ↦ (𝐹f𝑚)) = (𝑚𝑆 ↦ (𝐹f𝑚)))
134 eqidd 2740 . . . . . . . . 9 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
135 breq2 5079 . . . . . . . . . . . 12 (𝑛 = (𝐹f𝑚) → (𝑥r𝑛𝑥r ≤ (𝐹f𝑚)))
136135rabbidv 3415 . . . . . . . . . . 11 (𝑛 = (𝐹f𝑚) → {𝑥𝐷𝑥r𝑛} = {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})
137 ovex 7317 . . . . . . . . . . . . 13 (𝑛f𝑗) ∈ V
138 psrass1lem.y . . . . . . . . . . . . 13 (𝑘 = (𝑛f𝑗) → 𝑋 = 𝑌)
139137, 138csbie 3869 . . . . . . . . . . . 12 (𝑛f𝑗) / 𝑘𝑋 = 𝑌
140 oveq1 7291 . . . . . . . . . . . . 13 (𝑛 = (𝐹f𝑚) → (𝑛f𝑗) = ((𝐹f𝑚) ∘f𝑗))
141140csbeq1d 3837 . . . . . . . . . . . 12 (𝑛 = (𝐹f𝑚) → (𝑛f𝑗) / 𝑘𝑋 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
142139, 141eqtr3id 2793 . . . . . . . . . . 11 (𝑛 = (𝐹f𝑚) → 𝑌 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
143136, 142mpteq12dv 5166 . . . . . . . . . 10 (𝑛 = (𝐹f𝑚) → (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌) = (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
144143oveq2d 7300 . . . . . . . . 9 (𝑛 = (𝐹f𝑚) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)) = (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
14577, 133, 134, 144fmptco 7010 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))))
146145coeq1d 5773 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))))
147 coires1 6172 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆)
148 ssid 3944 . . . . . . . . . 10 𝑆𝑆
149 resmpt 5948 . . . . . . . . . 10 (𝑆𝑆 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
150148, 149ax-mp 5 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
151147, 150eqtri 2767 . . . . . . . 8 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
152151a1i 11 . . . . . . 7 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
153132, 146, 1523eqtr3d 2787 . . . . . 6 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
154153feq1d 6594 . . . . 5 (𝜑 → (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵 ↔ (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))):𝑆𝐵))
155127, 154mpbid 231 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))):𝑆𝐵)
156 rabexg 5256 . . . . . . . 8 (𝐷 ∈ V → {𝑦𝐷𝑦r𝐹} ∈ V)
157105, 156mp1i 13 . . . . . . 7 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ V)
1582, 157eqeltrid 2844 . . . . . 6 (𝜑𝑆 ∈ V)
159158mptexd 7109 . . . . 5 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∈ V)
160 funmpt 6479 . . . . . 6 Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
161160a1i 11 . . . . 5 (𝜑 → Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
162 fvexd 6798 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
163 suppssdm 8002 . . . . . . 7 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
164 eqid 2739 . . . . . . . 8 (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
165164dmmptss 6149 . . . . . . 7 dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ⊆ 𝑆
166163, 165sstri 3931 . . . . . 6 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆
167166a1i 11 . . . . 5 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)
168 suppssfifsupp 9152 . . . . 5 ((((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∈ V ∧ Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∧ (0g𝐺) ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)) → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) finSupp (0g𝐺))
169159, 161, 162, 75, 167, 168syl32anc 1377 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) finSupp (0g𝐺))
1704, 72, 5, 75, 155, 169, 123gsumf1o 19526 . . 3 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))))
171145oveq2d 7300 . . 3 (𝜑 → (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
172170, 171eqtrd 2779 . 2 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
1735adantr 481 . . . . . 6 ((𝜑𝑗𝑆) → 𝐺 ∈ CMnd)
174105a1i 11 . . . . . . . 8 ((𝜑𝑗𝑆) → 𝐷 ∈ V)
175 rabexg 5256 . . . . . . . 8 (𝐷 ∈ V → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V)
176 mptexg 7106 . . . . . . . 8 ({𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V)
177174, 175, 1763syl 18 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V)
178 funmpt 6479 . . . . . . . 8 Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
179178a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋))
180 fvexd 6798 . . . . . . 7 ((𝜑𝑗𝑆) → (0g𝐺) ∈ V)
181 suppssdm 8002 . . . . . . . . 9 ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ dom (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
182 eqid 2739 . . . . . . . . . 10 (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
183182dmmptss 6149 . . . . . . . . 9 dom (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
184181, 183sstri 3931 . . . . . . . 8 ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
185184a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
186 suppssfifsupp 9152 . . . . . . 7 ((((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V ∧ Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin ∧ ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) finSupp (0g𝐺))
187177, 179, 180, 91, 185, 186syl32anc 1377 . . . . . 6 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) finSupp (0g𝐺))
1884, 72, 173, 91, 9, 187, 16gsumf1o 19526 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)))))
18965oveq2d 7300 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)))) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
190188, 189eqtrd 2779 . . . 4 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
191190mpteq2dva 5175 . . 3 (𝜑 → (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋))) = (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))))
192191oveq2d 7300 . 2 (𝜑 → (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
193100, 172, 1923eqtr4d 2789 1 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2107  {crab 3069  Vcvv 3433  csb 3833  wss 3888   class class class wbr 5075  cmpt 5158   I cid 5489   × cxp 5588  ccnv 5589  dom cdm 5590  cres 5592  cima 5593  ccom 5594  Fun wfun 6431  wf 6433  1-1-ontowf1o 6436  cfv 6437  (class class class)co 7284  cmpo 7286  f cof 7540  r cofr 7541   supp csupp 7986  m cmap 8624  Fincfn 8742   finSupp cfsupp 9137  cc 10878  cle 11019  cmin 11214  cn 11982  0cn0 12242  Basecbs 16921  0gc0g 17159   Σg cgsu 17160  CMndccmn 19395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-iin 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-of 7542  df-ofr 7543  df-om 7722  df-1st 7840  df-2nd 7841  df-supp 7987  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-er 8507  df-map 8626  df-pm 8627  df-ixp 8695  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-fsupp 9138  df-oi 9278  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-nn 11983  df-2 12045  df-n0 12243  df-z 12329  df-uz 12592  df-fz 13249  df-fzo 13392  df-seq 13731  df-hash 14054  df-sets 16874  df-slot 16892  df-ndx 16904  df-base 16922  df-ress 16951  df-plusg 16984  df-0g 17161  df-gsum 17162  df-mre 17304  df-mrc 17305  df-acs 17307  df-mgm 18335  df-sgrp 18384  df-mnd 18395  df-submnd 18440  df-mulg 18710  df-cntz 18932  df-cmn 19397
This theorem is referenced by:  psrass1  21183
  Copyright terms: Public domain W3C validator