Step | Hyp | Ref
| Expression |
1 | | gsumbagdiag.d |
. . . 4
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
2 | | gsumbagdiag.s |
. . . 4
⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
3 | | gsumbagdiag.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
4 | | gsumbagdiag.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
5 | | gsumbagdiag.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ CMnd) |
6 | 1, 2, 3 | gsumbagdiaglem 21153 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) |
7 | | gsumbagdiag.x |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑋 ∈ 𝐵) |
8 | 7 | anassrs 468 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑋 ∈ 𝐵) |
9 | 8 | fmpttd 6998 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵) |
10 | 2 | ssrab3 4016 |
. . . . . . . . . . . 12
⊢ 𝑆 ⊆ 𝐷 |
11 | 1, 2 | psrbagconcl 21146 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑗 ∈ 𝑆) → (𝐹 ∘f − 𝑗) ∈ 𝑆) |
12 | 3, 11 | sylan 580 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐹 ∘f − 𝑗) ∈ 𝑆) |
13 | 10, 12 | sselid 3920 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐹 ∘f − 𝑗) ∈ 𝐷) |
14 | | eqid 2739 |
. . . . . . . . . . . 12
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} = {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} |
15 | 1, 14 | psrbagconf1o 21148 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘f −
𝑗) ∈ 𝐷 → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}–1-1-onto→{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
16 | 13, 15 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}–1-1-onto→{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
17 | | f1of 6725 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}–1-1-onto→{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
18 | 16, 17 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
19 | 9, 18 | fcod 6635 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵) |
20 | 3 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝐹 ∈ 𝐷) |
21 | 20 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝐹 ∈ 𝐷) |
22 | 1 | psrbagf 21130 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝐹:𝐼⟶ℕ0) |
24 | 23 | ffvelrnda 6970 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) ∈
ℕ0) |
25 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑗 ∈ 𝑆) |
26 | 10, 25 | sselid 3920 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑗 ∈ 𝐷) |
27 | 1 | psrbagf 21130 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ 𝐷 → 𝑗:𝐼⟶ℕ0) |
28 | 26, 27 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑗:𝐼⟶ℕ0) |
29 | 28 | ffvelrnda 6970 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → (𝑗‘𝑧) ∈
ℕ0) |
30 | | ssrab2 4014 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ⊆ 𝐷 |
31 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
32 | 30, 31 | sselid 3920 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑚 ∈ 𝐷) |
33 | 1 | psrbagf 21130 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ 𝐷 → 𝑚:𝐼⟶ℕ0) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑚:𝐼⟶ℕ0) |
35 | 34 | ffvelrnda 6970 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → (𝑚‘𝑧) ∈
ℕ0) |
36 | | nn0cn 12252 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑧) ∈ ℕ0 → (𝐹‘𝑧) ∈ ℂ) |
37 | | nn0cn 12252 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗‘𝑧) ∈ ℕ0 → (𝑗‘𝑧) ∈ ℂ) |
38 | | nn0cn 12252 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚‘𝑧) ∈ ℕ0 → (𝑚‘𝑧) ∈ ℂ) |
39 | | sub32 11264 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑧) ∈ ℂ ∧ (𝑗‘𝑧) ∈ ℂ ∧ (𝑚‘𝑧) ∈ ℂ) → (((𝐹‘𝑧) − (𝑗‘𝑧)) − (𝑚‘𝑧)) = (((𝐹‘𝑧) − (𝑚‘𝑧)) − (𝑗‘𝑧))) |
40 | 36, 37, 38, 39 | syl3an 1159 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑧) ∈ ℕ0 ∧ (𝑗‘𝑧) ∈ ℕ0 ∧ (𝑚‘𝑧) ∈ ℕ0) → (((𝐹‘𝑧) − (𝑗‘𝑧)) − (𝑚‘𝑧)) = (((𝐹‘𝑧) − (𝑚‘𝑧)) − (𝑗‘𝑧))) |
41 | 24, 29, 35, 40 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → (((𝐹‘𝑧) − (𝑗‘𝑧)) − (𝑚‘𝑧)) = (((𝐹‘𝑧) − (𝑚‘𝑧)) − (𝑗‘𝑧))) |
42 | 41 | mpteq2dva 5175 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → (𝑧 ∈ 𝐼 ↦ (((𝐹‘𝑧) − (𝑗‘𝑧)) − (𝑚‘𝑧))) = (𝑧 ∈ 𝐼 ↦ (((𝐹‘𝑧) − (𝑚‘𝑧)) − (𝑗‘𝑧)))) |
43 | 34 | ffnd 6610 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑚 Fn 𝐼) |
44 | 31, 43 | fndmexd 7762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝐼 ∈ V) |
45 | | ovexd 7319 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑧) − (𝑗‘𝑧)) ∈ V) |
46 | 23 | feqmptd 6846 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝐹 = (𝑧 ∈ 𝐼 ↦ (𝐹‘𝑧))) |
47 | 28 | feqmptd 6846 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑗 = (𝑧 ∈ 𝐼 ↦ (𝑗‘𝑧))) |
48 | 44, 24, 29, 46, 47 | offval2 7562 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → (𝐹 ∘f − 𝑗) = (𝑧 ∈ 𝐼 ↦ ((𝐹‘𝑧) − (𝑗‘𝑧)))) |
49 | 34 | feqmptd 6846 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → 𝑚 = (𝑧 ∈ 𝐼 ↦ (𝑚‘𝑧))) |
50 | 44, 45, 35, 48, 49 | offval2 7562 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑗) ∘f −
𝑚) = (𝑧 ∈ 𝐼 ↦ (((𝐹‘𝑧) − (𝑗‘𝑧)) − (𝑚‘𝑧)))) |
51 | | ovexd 7319 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑧) − (𝑚‘𝑧)) ∈ V) |
52 | 44, 24, 35, 46, 49 | offval2 7562 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → (𝐹 ∘f − 𝑚) = (𝑧 ∈ 𝐼 ↦ ((𝐹‘𝑧) − (𝑚‘𝑧)))) |
53 | 44, 51, 29, 52, 47 | offval2 7562 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑚) ∘f −
𝑗) = (𝑧 ∈ 𝐼 ↦ (((𝐹‘𝑧) − (𝑚‘𝑧)) − (𝑗‘𝑧)))) |
54 | 42, 50, 53 | 3eqtr4d 2789 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑗) ∘f −
𝑚) = ((𝐹 ∘f − 𝑚) ∘f −
𝑗)) |
55 | 1, 14 | psrbagconcl 21146 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∘f −
𝑗) ∈ 𝐷 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑗) ∘f −
𝑚) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
56 | 13, 55 | sylan 580 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑗) ∘f −
𝑚) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
57 | 54, 56 | eqeltrrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) → ((𝐹 ∘f − 𝑚) ∘f −
𝑗) ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
58 | 54 | mpteq2dva 5175 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)) = (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑚) ∘f −
𝑗))) |
59 | | nfcv 2908 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛𝑋 |
60 | | nfcsb1v 3858 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋𝑛 / 𝑘⦌𝑋 |
61 | | csbeq1a 3847 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → 𝑋 = ⦋𝑛 / 𝑘⦌𝑋) |
62 | 59, 60, 61 | cbvmpt 5186 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ⦋𝑛 / 𝑘⦌𝑋) |
63 | 62 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ⦋𝑛 / 𝑘⦌𝑋)) |
64 | | csbeq1 3836 |
. . . . . . . . . 10
⊢ (𝑛 = ((𝐹 ∘f − 𝑚) ∘f −
𝑗) →
⦋𝑛 / 𝑘⦌𝑋 = ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋) |
65 | 57, 58, 63, 64 | fmptco 7010 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚))) = (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) |
66 | 65 | feq1d 6594 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚))):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵 ↔ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵)) |
67 | 19, 66 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}⟶𝐵) |
68 | 67 | fvmptelrn 6996 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑆) ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) →
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋 ∈ 𝐵) |
69 | 68 | anasss 467 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) →
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋 ∈ 𝐵) |
70 | 6, 69 | syldan 591 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) →
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋 ∈ 𝐵) |
71 | 1, 2, 3, 4, 5, 70 | gsumbagdiag 21154 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑚 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) = (𝐺 Σg (𝑗 ∈ 𝑆, 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) |
72 | | eqid 2739 |
. . . 4
⊢
(0g‘𝐺) = (0g‘𝐺) |
73 | 1 | psrbaglefi 21144 |
. . . . . 6
⊢ (𝐹 ∈ 𝐷 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
74 | 3, 73 | syl 17 |
. . . . 5
⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ Fin) |
75 | 2, 74 | eqeltrid 2844 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ Fin) |
76 | 1, 2 | psrbagconcl 21146 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑚 ∈ 𝑆) → (𝐹 ∘f − 𝑚) ∈ 𝑆) |
77 | 3, 76 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝐹 ∘f − 𝑚) ∈ 𝑆) |
78 | 10, 77 | sselid 3920 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝐹 ∘f − 𝑚) ∈ 𝐷) |
79 | 1 | psrbaglefi 21144 |
. . . . 5
⊢ ((𝐹 ∘f −
𝑚) ∈ 𝐷 → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ∈ Fin) |
80 | 78, 79 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ∈ Fin) |
81 | | xpfi 9094 |
. . . . 5
⊢ ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin) |
82 | 75, 75, 81 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑆 × 𝑆) ∈ Fin) |
83 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → 𝑚 ∈ 𝑆) |
84 | 6 | simpld 495 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → 𝑗 ∈ 𝑆) |
85 | | brxp 5637 |
. . . . . . 7
⊢ (𝑚(𝑆 × 𝑆)𝑗 ↔ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ 𝑆)) |
86 | 83, 84, 85 | sylanbrc 583 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → 𝑚(𝑆 × 𝑆)𝑗) |
87 | 86 | pm2.24d 151 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → (¬ 𝑚(𝑆 × 𝑆)𝑗 → ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋 = (0g‘𝐺))) |
88 | 87 | impr 455 |
. . . 4
⊢ ((𝜑 ∧ ((𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)}) ∧ ¬ 𝑚(𝑆 × 𝑆)𝑗)) → ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋 = (0g‘𝐺)) |
89 | 4, 72, 5, 75, 80, 70, 82, 88 | gsum2d2 19584 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑚 ∈ 𝑆, 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) = (𝐺 Σg (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
90 | 1 | psrbaglefi 21144 |
. . . . 5
⊢ ((𝐹 ∘f −
𝑗) ∈ 𝐷 → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ Fin) |
91 | 13, 90 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ Fin) |
92 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗 ∈ 𝑆) |
93 | 1, 2, 3 | gsumbagdiaglem 21153 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (𝑚 ∈ 𝑆 ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) |
94 | 93 | simpld 495 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑚 ∈ 𝑆) |
95 | | brxp 5637 |
. . . . . . 7
⊢ (𝑗(𝑆 × 𝑆)𝑚 ↔ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ 𝑆)) |
96 | 92, 94, 95 | sylanbrc 583 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → 𝑗(𝑆 × 𝑆)𝑚) |
97 | 96 | pm2.24d 151 |
. . . . 5
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑚 → ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋 = (0g‘𝐺))) |
98 | 97 | impr 455 |
. . . 4
⊢ ((𝜑 ∧ ((𝑗 ∈ 𝑆 ∧ 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑚)) → ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋 = (0g‘𝐺)) |
99 | 4, 72, 5, 75, 91, 69, 82, 98 | gsum2d2 19584 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆, 𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) = (𝐺 Σg (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
100 | 71, 89, 99 | 3eqtr3d 2787 |
. 2
⊢ (𝜑 → (𝐺 Σg (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)))) = (𝐺 Σg (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
101 | 5 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝐺 ∈ CMnd) |
102 | 70 | anassrs 468 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ 𝑆) ∧ 𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)}) →
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋 ∈ 𝐵) |
103 | 102 | fmpttd 6998 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋):{𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)}⟶𝐵) |
104 | | ovex 7317 |
. . . . . . . . . . . 12
⊢
(ℕ0 ↑m 𝐼) ∈ V |
105 | 1, 104 | rabex2 5259 |
. . . . . . . . . . 11
⊢ 𝐷 ∈ V |
106 | 105 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → 𝐷 ∈ V) |
107 | | rabexg 5256 |
. . . . . . . . . 10
⊢ (𝐷 ∈ V → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ∈ V) |
108 | | mptexg 7106 |
. . . . . . . . . 10
⊢ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ∈ V → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) ∈ V) |
109 | 106, 107,
108 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) ∈ V) |
110 | | funmpt 6479 |
. . . . . . . . . 10
⊢ Fun
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) |
111 | 110 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → Fun (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) |
112 | | fvexd 6798 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (0g‘𝐺) ∈ V) |
113 | | suppssdm 8002 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) supp (0g‘𝐺)) ⊆ dom (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) |
114 | | eqid 2739 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) = (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) |
115 | 114 | dmmptss 6149 |
. . . . . . . . . . 11
⊢ dom
(𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} |
116 | 113, 115 | sstri 3931 |
. . . . . . . . . 10
⊢ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} |
117 | 116 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)}) |
118 | | suppssfifsupp 9152 |
. . . . . . . . 9
⊢ ((((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) ∈ V ∧ Fun (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) ∧ (0g‘𝐺) ∈ V) ∧ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ∈ Fin ∧ ((𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)})) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) finSupp (0g‘𝐺)) |
119 | 109, 111,
112, 80, 117, 118 | syl32anc 1377 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋) finSupp (0g‘𝐺)) |
120 | 4, 72, 101, 80, 103, 119 | gsumcl 19525 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑆) → (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) ∈ 𝐵) |
121 | 120 | fmpttd 6998 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))):𝑆⟶𝐵) |
122 | 1, 2 | psrbagconf1o 21148 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐷 → (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆) |
123 | 3, 122 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆) |
124 | | f1ocnv 6737 |
. . . . . . 7
⊢ ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆 → ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆) |
125 | | f1of 6725 |
. . . . . . 7
⊢ (◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆 → ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆⟶𝑆) |
126 | 123, 124,
125 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆⟶𝑆) |
127 | 121, 126 | fcod 6635 |
. . . . 5
⊢ (𝜑 → ((𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))):𝑆⟶𝐵) |
128 | | coass 6173 |
. . . . . . . 8
⊢ (((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)))) |
129 | | f1ococnv2 6752 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)):𝑆–1-1-onto→𝑆 → ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = ( I ↾ 𝑆)) |
130 | 123, 129 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = ( I ↾ 𝑆)) |
131 | 130 | coeq2d 5774 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ((𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)))) = ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆))) |
132 | 128, 131 | eqtrid 2791 |
. . . . . . 7
⊢ (𝜑 → (((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆))) |
133 | | eqidd 2740 |
. . . . . . . . 9
⊢ (𝜑 → (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)) = (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) |
134 | | eqidd 2740 |
. . . . . . . . 9
⊢ (𝜑 → (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) |
135 | | breq2 5079 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → (𝑥 ∘r ≤ 𝑛 ↔ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚))) |
136 | 135 | rabbidv 3415 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} = {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)}) |
137 | | ovex 7317 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∘f −
𝑗) ∈
V |
138 | | psrass1lem.y |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑛 ∘f − 𝑗) → 𝑋 = 𝑌) |
139 | 137, 138 | csbie 3869 |
. . . . . . . . . . . 12
⊢
⦋(𝑛
∘f − 𝑗) / 𝑘⦌𝑋 = 𝑌 |
140 | | oveq1 7291 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → (𝑛 ∘f − 𝑗) = ((𝐹 ∘f − 𝑚) ∘f −
𝑗)) |
141 | 140 | csbeq1d 3837 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → ⦋(𝑛 ∘f −
𝑗) / 𝑘⦌𝑋 = ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋) |
142 | 139, 141 | eqtr3id 2793 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → 𝑌 = ⦋((𝐹 ∘f − 𝑚) ∘f −
𝑗) / 𝑘⦌𝑋) |
143 | 136, 142 | mpteq12dv 5166 |
. . . . . . . . . 10
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌) = (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)) |
144 | 143 | oveq2d 7300 |
. . . . . . . . 9
⊢ (𝑛 = (𝐹 ∘f − 𝑚) → (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)) = (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) |
145 | 77, 133, 134, 144 | fmptco 7010 |
. . . . . . . 8
⊢ (𝜑 → ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)))) |
146 | 145 | coeq1d 5773 |
. . . . . . 7
⊢ (𝜑 → (((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = ((𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)))) |
147 | | coires1 6172 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ↾ 𝑆) |
148 | | ssid 3944 |
. . . . . . . . . 10
⊢ 𝑆 ⊆ 𝑆 |
149 | | resmpt 5948 |
. . . . . . . . . 10
⊢ (𝑆 ⊆ 𝑆 → ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) |
150 | 148, 149 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) |
151 | 147, 150 | eqtri 2767 |
. . . . . . . 8
⊢ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) |
152 | 151 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) |
153 | 132, 146,
152 | 3eqtr3d 2787 |
. . . . . 6
⊢ (𝜑 → ((𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) |
154 | 153 | feq1d 6594 |
. . . . 5
⊢ (𝜑 → (((𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) ∘ ◡(𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))):𝑆⟶𝐵 ↔ (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))):𝑆⟶𝐵)) |
155 | 127, 154 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))):𝑆⟶𝐵) |
156 | | rabexg 5256 |
. . . . . . . 8
⊢ (𝐷 ∈ V → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ V) |
157 | 105, 156 | mp1i 13 |
. . . . . . 7
⊢ (𝜑 → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} ∈ V) |
158 | 2, 157 | eqeltrid 2844 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ V) |
159 | 158 | mptexd 7109 |
. . . . 5
⊢ (𝜑 → (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∈ V) |
160 | | funmpt 6479 |
. . . . . 6
⊢ Fun
(𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) |
161 | 160 | a1i 11 |
. . . . 5
⊢ (𝜑 → Fun (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) |
162 | | fvexd 6798 |
. . . . 5
⊢ (𝜑 → (0g‘𝐺) ∈ V) |
163 | | suppssdm 8002 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) supp (0g‘𝐺)) ⊆ dom (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) |
164 | | eqid 2739 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) = (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) |
165 | 164 | dmmptss 6149 |
. . . . . . 7
⊢ dom
(𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ⊆ 𝑆 |
166 | 163, 165 | sstri 3931 |
. . . . . 6
⊢ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) supp (0g‘𝐺)) ⊆ 𝑆 |
167 | 166 | a1i 11 |
. . . . 5
⊢ (𝜑 → ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) supp (0g‘𝐺)) ⊆ 𝑆) |
168 | | suppssfifsupp 9152 |
. . . . 5
⊢ ((((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∈ V ∧ Fun (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∧ (0g‘𝐺) ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) supp (0g‘𝐺)) ⊆ 𝑆)) → (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) finSupp (0g‘𝐺)) |
169 | 159, 161,
162, 75, 167, 168 | syl32anc 1377 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) finSupp (0g‘𝐺)) |
170 | 4, 72, 5, 75, 155, 169, 123 | gsumf1o 19526 |
. . 3
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) = (𝐺 Σg ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚))))) |
171 | 145 | oveq2d 7300 |
. . 3
⊢ (𝜑 → (𝐺 Σg ((𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌))) ∘ (𝑚 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑚)))) = (𝐺 Σg (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
172 | 170, 171 | eqtrd 2779 |
. 2
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑚 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑚)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
173 | 5 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝐺 ∈ CMnd) |
174 | 105 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → 𝐷 ∈ V) |
175 | | rabexg 5256 |
. . . . . . . 8
⊢ (𝐷 ∈ V → {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V) |
176 | | mptexg 7106 |
. . . . . . . 8
⊢ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ V → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∈ V) |
177 | 174, 175,
176 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∈ V) |
178 | | funmpt 6479 |
. . . . . . . 8
⊢ Fun
(𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) |
179 | 178 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → Fun (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) |
180 | | fvexd 6798 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (0g‘𝐺) ∈ V) |
181 | | suppssdm 8002 |
. . . . . . . . 9
⊢ ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) supp (0g‘𝐺)) ⊆ dom (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) |
182 | | eqid 2739 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) = (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) |
183 | 182 | dmmptss 6149 |
. . . . . . . . 9
⊢ dom
(𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} |
184 | 181, 183 | sstri 3931 |
. . . . . . . 8
⊢ ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} |
185 | 184 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)}) |
186 | | suppssfifsupp 9152 |
. . . . . . 7
⊢ ((((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∈ V ∧ Fun (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∧ (0g‘𝐺) ∈ V) ∧ ({𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ∈ Fin ∧ ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) supp (0g‘𝐺)) ⊆ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)})) → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) finSupp (0g‘𝐺)) |
187 | 177, 179,
180, 91, 185, 186 | syl32anc 1377 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) finSupp (0g‘𝐺)) |
188 | 4, 72, 173, 91, 9, 187, 16 | gsumf1o 19526 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚))))) |
189 | 65 | oveq2d 7300 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐺 Σg ((𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ ((𝐹 ∘f − 𝑗) ∘f −
𝑚)))) = (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) |
190 | 188, 189 | eqtrd 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))) |
191 | 190 | mpteq2dva 5175 |
. . 3
⊢ (𝜑 → (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋))) = (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋)))) |
192 | 191 | oveq2d 7300 |
. 2
⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋)))) = (𝐺 Σg (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦
⦋((𝐹
∘f − 𝑚) ∘f − 𝑗) / 𝑘⦌𝑋))))) |
193 | 100, 172,
192 | 3eqtr4d 2789 |
1
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗 ∈ 𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑗)} ↦ 𝑋))))) |