MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass1lem Structured version   Visualization version   GIF version

Theorem psrass1lem 21817
Description: A group sum commutation used by psrass1 21849. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
gsumbagdiag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
gsumbagdiag.s 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiag.f (𝜑𝐹𝐷)
gsumbagdiag.b 𝐵 = (Base‘𝐺)
gsumbagdiag.g (𝜑𝐺 ∈ CMnd)
gsumbagdiag.x ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
psrass1lem.y (𝑘 = (𝑛f𝑗) → 𝑋 = 𝑌)
Assertion
Ref Expression
psrass1lem (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))))
Distinct variable groups:   𝑥,𝐷   𝑦,𝐷   𝑓,𝐹,𝑥   𝑦,𝐹   𝑓,𝐼   𝑓,𝑋,𝑥   𝑦,𝑋   𝑓,𝑌,𝑥   𝑦,𝑌   𝐵,𝑗,𝑘   𝐷,𝑗,𝑘   𝑗,𝐹,𝑘   𝑗,𝐺,𝑘   𝑦,𝐼,𝑓   𝑆,𝑗,𝑘   𝜑,𝑗,𝑘   𝑓,𝑗,𝑘,𝑦   𝑥,𝑗,𝑘   𝐷,𝑛,𝑗,𝑘,𝑥   𝑥,𝑓   𝑛,𝐹   𝑛,𝐺   𝑥,𝐼   𝑆,𝑛   𝑛,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑛)   𝐷(𝑓)   𝑆(𝑥,𝑦,𝑓)   𝐺(𝑥,𝑦,𝑓)   𝐼(𝑗,𝑘,𝑛)   𝑋(𝑗,𝑘)   𝑌(𝑗,𝑛)

Proof of Theorem psrass1lem
Dummy variables 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumbagdiag.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2 gsumbagdiag.s . . . 4 𝑆 = {𝑦𝐷𝑦r𝐹}
3 gsumbagdiag.f . . . 4 (𝜑𝐹𝐷)
4 gsumbagdiag.b . . . 4 𝐵 = (Base‘𝐺)
5 gsumbagdiag.g . . . 4 (𝜑𝐺 ∈ CMnd)
61, 2, 3gsumbagdiaglem 21815 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}))
7 gsumbagdiag.x . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑆𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑋𝐵)
87anassrs 467 . . . . . . . . . 10 (((𝜑𝑗𝑆) ∧ 𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑋𝐵)
98fmpttd 7069 . . . . . . . . 9 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
102ssrab3 4041 . . . . . . . . . . . 12 𝑆𝐷
111, 2psrbagconcl 21812 . . . . . . . . . . . . 13 ((𝐹𝐷𝑗𝑆) → (𝐹f𝑗) ∈ 𝑆)
123, 11sylan 580 . . . . . . . . . . . 12 ((𝜑𝑗𝑆) → (𝐹f𝑗) ∈ 𝑆)
1310, 12sselid 3941 . . . . . . . . . . 11 ((𝜑𝑗𝑆) → (𝐹f𝑗) ∈ 𝐷)
14 eqid 2729 . . . . . . . . . . . 12 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} = {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
151, 14psrbagconf1o 21814 . . . . . . . . . . 11 ((𝐹f𝑗) ∈ 𝐷 → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
1613, 15syl 17 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
17 f1of 6782 . . . . . . . . . 10 ((𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}–1-1-onto→{𝑥𝐷𝑥r ≤ (𝐹f𝑗)} → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
1816, 17syl 17 . . . . . . . . 9 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶{𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
199, 18fcod 6695 . . . . . . . 8 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
203adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑆) → 𝐹𝐷)
2120adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹𝐷)
221psrbagf 21803 . . . . . . . . . . . . . . . 16 (𝐹𝐷𝐹:𝐼⟶ℕ0)
2321, 22syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹:𝐼⟶ℕ0)
2423ffvelcdmda 7038 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
25 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗𝑆)
2610, 25sselid 3941 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗𝐷)
271psrbagf 21803 . . . . . . . . . . . . . . . 16 (𝑗𝐷𝑗:𝐼⟶ℕ0)
2826, 27syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗:𝐼⟶ℕ0)
2928ffvelcdmda 7038 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝑗𝑧) ∈ ℕ0)
30 ssrab2 4039 . . . . . . . . . . . . . . . . 17 {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ⊆ 𝐷
31 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
3230, 31sselid 3941 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚𝐷)
331psrbagf 21803 . . . . . . . . . . . . . . . 16 (𝑚𝐷𝑚:𝐼⟶ℕ0)
3432, 33syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚:𝐼⟶ℕ0)
3534ffvelcdmda 7038 . . . . . . . . . . . . . 14 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (𝑚𝑧) ∈ ℕ0)
36 nn0cn 12428 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℂ)
37 nn0cn 12428 . . . . . . . . . . . . . . 15 ((𝑗𝑧) ∈ ℕ0 → (𝑗𝑧) ∈ ℂ)
38 nn0cn 12428 . . . . . . . . . . . . . . 15 ((𝑚𝑧) ∈ ℕ0 → (𝑚𝑧) ∈ ℂ)
39 sub32 11432 . . . . . . . . . . . . . . 15 (((𝐹𝑧) ∈ ℂ ∧ (𝑗𝑧) ∈ ℂ ∧ (𝑚𝑧) ∈ ℂ) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4036, 37, 38, 39syl3an 1160 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ ℕ0 ∧ (𝑗𝑧) ∈ ℕ0 ∧ (𝑚𝑧) ∈ ℕ0) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4124, 29, 35, 40syl3anc 1373 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧)) = (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧)))
4241mpteq2dva 5195 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
4334ffnd 6671 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 Fn 𝐼)
4431, 43fndmexd 7860 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐼 ∈ V)
45 ovexd 7404 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑗𝑧)) ∈ V)
4623feqmptd 6911 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝐹 = (𝑧𝐼 ↦ (𝐹𝑧)))
4728feqmptd 6911 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑗 = (𝑧𝐼 ↦ (𝑗𝑧)))
4844, 24, 29, 46, 47offval2 7653 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑗) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑗𝑧))))
4934feqmptd 6911 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → 𝑚 = (𝑧𝐼 ↦ (𝑚𝑧)))
5044, 45, 35, 48, 49offval2 7653 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑗𝑧)) − (𝑚𝑧))))
51 ovexd 7404 . . . . . . . . . . . . 13 ((((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑚𝑧)) ∈ V)
5244, 24, 35, 46, 49offval2 7653 . . . . . . . . . . . . 13 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → (𝐹f𝑚) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑚𝑧))))
5344, 51, 29, 52, 47offval2 7653 . . . . . . . . . . . 12 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) = (𝑧𝐼 ↦ (((𝐹𝑧) − (𝑚𝑧)) − (𝑗𝑧))))
5442, 50, 533eqtr4d 2774 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) = ((𝐹f𝑚) ∘f𝑗))
551, 14psrbagconcl 21812 . . . . . . . . . . . 12 (((𝐹f𝑗) ∈ 𝐷𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
5613, 55sylan 580 . . . . . . . . . . 11 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑗) ∘f𝑚) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
5754, 56eqeltrrd 2829 . . . . . . . . . 10 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
5854mpteq2dva 5195 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)) = (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗)))
59 nfcv 2891 . . . . . . . . . . . 12 𝑛𝑋
60 nfcsb1v 3883 . . . . . . . . . . . 12 𝑘𝑛 / 𝑘𝑋
61 csbeq1a 3873 . . . . . . . . . . . 12 (𝑘 = 𝑛𝑋 = 𝑛 / 𝑘𝑋)
6259, 60, 61cbvmpt 5204 . . . . . . . . . . 11 (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑛 / 𝑘𝑋)
6362a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑛 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑛 / 𝑘𝑋))
64 csbeq1 3862 . . . . . . . . . 10 (𝑛 = ((𝐹f𝑚) ∘f𝑗) → 𝑛 / 𝑘𝑋 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
6557, 58, 63, 64fmptco 7083 . . . . . . . . 9 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))) = (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
6665feq1d 6652 . . . . . . . 8 ((𝜑𝑗𝑆) → (((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚))):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵 ↔ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵))
6719, 66mpbid 232 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑗)}⟶𝐵)
6867fvmptelcdm 7067 . . . . . 6 (((𝜑𝑗𝑆) ∧ 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
6968anasss 466 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
706, 69syldan 591 . . . 4 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
711, 2, 3, 4, 5, 70gsumbagdiag 21816 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
72 eqid 2729 . . . 4 (0g𝐺) = (0g𝐺)
731psrbaglefi 21811 . . . . . 6 (𝐹𝐷 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
743, 73syl 17 . . . . 5 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ Fin)
752, 74eqeltrid 2832 . . . 4 (𝜑𝑆 ∈ Fin)
761, 2psrbagconcl 21812 . . . . . . 7 ((𝐹𝐷𝑚𝑆) → (𝐹f𝑚) ∈ 𝑆)
773, 76sylan 580 . . . . . 6 ((𝜑𝑚𝑆) → (𝐹f𝑚) ∈ 𝑆)
7810, 77sselid 3941 . . . . 5 ((𝜑𝑚𝑆) → (𝐹f𝑚) ∈ 𝐷)
791psrbaglefi 21811 . . . . 5 ((𝐹f𝑚) ∈ 𝐷 → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin)
8078, 79syl 17 . . . 4 ((𝜑𝑚𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin)
81 xpfi 9245 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ∈ Fin) → (𝑆 × 𝑆) ∈ Fin)
8275, 75, 81syl2anc 584 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ Fin)
83 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑚𝑆)
846simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑗𝑆)
85 brxp 5680 . . . . . . 7 (𝑚(𝑆 × 𝑆)𝑗 ↔ (𝑚𝑆𝑗𝑆))
8683, 84, 85sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → 𝑚(𝑆 × 𝑆)𝑗)
8786pm2.24d 151 . . . . 5 ((𝜑 ∧ (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (¬ 𝑚(𝑆 × 𝑆)𝑗((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺)))
8887impr 454 . . . 4 ((𝜑 ∧ ((𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}) ∧ ¬ 𝑚(𝑆 × 𝑆)𝑗)) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺))
894, 72, 5, 75, 80, 70, 82, 88gsum2d2 19880 . . 3 (𝜑 → (𝐺 Σg (𝑚𝑆, 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
901psrbaglefi 21811 . . . . 5 ((𝐹f𝑗) ∈ 𝐷 → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin)
9113, 90syl 17 . . . 4 ((𝜑𝑗𝑆) → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin)
92 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗𝑆)
931, 2, 3gsumbagdiaglem 21815 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑚𝑆𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}))
9493simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑚𝑆)
95 brxp 5680 . . . . . . 7 (𝑗(𝑆 × 𝑆)𝑚 ↔ (𝑗𝑆𝑚𝑆))
9692, 94, 95sylanbrc 583 . . . . . 6 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → 𝑗(𝑆 × 𝑆)𝑚)
9796pm2.24d 151 . . . . 5 ((𝜑 ∧ (𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (¬ 𝑗(𝑆 × 𝑆)𝑚((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺)))
9897impr 454 . . . 4 ((𝜑 ∧ ((𝑗𝑆𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}) ∧ ¬ 𝑗(𝑆 × 𝑆)𝑚)) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋 = (0g𝐺))
994, 72, 5, 75, 91, 69, 82, 98gsum2d2 19880 . . 3 (𝜑 → (𝐺 Σg (𝑗𝑆, 𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
10071, 89, 993eqtr3d 2772 . 2 (𝜑 → (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
1015adantr 480 . . . . . . . 8 ((𝜑𝑚𝑆) → 𝐺 ∈ CMnd)
10270anassrs 467 . . . . . . . . 9 (((𝜑𝑚𝑆) ∧ 𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}) → ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋𝐵)
103102fmpttd 7069 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋):{𝑥𝐷𝑥r ≤ (𝐹f𝑚)}⟶𝐵)
104 ovex 7402 . . . . . . . . . . . 12 (ℕ0m 𝐼) ∈ V
1051, 104rabex2 5291 . . . . . . . . . . 11 𝐷 ∈ V
106105a1i 11 . . . . . . . . . 10 ((𝜑𝑚𝑆) → 𝐷 ∈ V)
107 rabexg 5287 . . . . . . . . . 10 (𝐷 ∈ V → {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ V)
108 mptexg 7177 . . . . . . . . . 10 ({𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ V → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V)
109106, 107, 1083syl 18 . . . . . . . . 9 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V)
110 funmpt 6538 . . . . . . . . . 10 Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
111110a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
112 fvexd 6855 . . . . . . . . 9 ((𝜑𝑚𝑆) → (0g𝐺) ∈ V)
113 suppssdm 8133 . . . . . . . . . . 11 ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ dom (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
114 eqid 2729 . . . . . . . . . . . 12 (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) = (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
115114dmmptss 6202 . . . . . . . . . . 11 dom (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}
116113, 115sstri 3953 . . . . . . . . . 10 ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)}
117116a1i 11 . . . . . . . . 9 ((𝜑𝑚𝑆) → ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})
118 suppssfifsupp 9307 . . . . . . . . 9 ((((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∈ V ∧ Fun (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ∈ Fin ∧ ((𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) finSupp (0g𝐺))
119109, 111, 112, 80, 117, 118syl32anc 1380 . . . . . . . 8 ((𝜑𝑚𝑆) → (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋) finSupp (0g𝐺))
1204, 72, 101, 80, 103, 119gsumcl 19821 . . . . . . 7 ((𝜑𝑚𝑆) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)) ∈ 𝐵)
121120fmpttd 7069 . . . . . 6 (𝜑 → (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))):𝑆𝐵)
1221, 2psrbagconf1o 21814 . . . . . . . 8 (𝐹𝐷 → (𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
1233, 122syl 17 . . . . . . 7 (𝜑 → (𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
124 f1ocnv 6794 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆)
125 f1of 6782 . . . . . . 7 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆)
126123, 124, 1253syl 18 . . . . . 6 (𝜑(𝑚𝑆 ↦ (𝐹f𝑚)):𝑆𝑆)
127121, 126fcod 6695 . . . . 5 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵)
128 coass 6226 . . . . . . . 8 (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))))
129 f1ococnv2 6809 . . . . . . . . . 10 ((𝑚𝑆 ↦ (𝐹f𝑚)):𝑆1-1-onto𝑆 → ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ( I ↾ 𝑆))
130123, 129syl 17 . . . . . . . . 9 (𝜑 → ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ( I ↾ 𝑆))
131130coeq2d 5816 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ((𝑚𝑆 ↦ (𝐹f𝑚)) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
132128, 131eqtrid 2776 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)))
133 eqidd 2730 . . . . . . . . 9 (𝜑 → (𝑚𝑆 ↦ (𝐹f𝑚)) = (𝑚𝑆 ↦ (𝐹f𝑚)))
134 eqidd 2730 . . . . . . . . 9 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
135 breq2 5106 . . . . . . . . . . . 12 (𝑛 = (𝐹f𝑚) → (𝑥r𝑛𝑥r ≤ (𝐹f𝑚)))
136135rabbidv 3410 . . . . . . . . . . 11 (𝑛 = (𝐹f𝑚) → {𝑥𝐷𝑥r𝑛} = {𝑥𝐷𝑥r ≤ (𝐹f𝑚)})
137 ovex 7402 . . . . . . . . . . . . 13 (𝑛f𝑗) ∈ V
138 psrass1lem.y . . . . . . . . . . . . 13 (𝑘 = (𝑛f𝑗) → 𝑋 = 𝑌)
139137, 138csbie 3894 . . . . . . . . . . . 12 (𝑛f𝑗) / 𝑘𝑋 = 𝑌
140 oveq1 7376 . . . . . . . . . . . . 13 (𝑛 = (𝐹f𝑚) → (𝑛f𝑗) = ((𝐹f𝑚) ∘f𝑗))
141140csbeq1d 3863 . . . . . . . . . . . 12 (𝑛 = (𝐹f𝑚) → (𝑛f𝑗) / 𝑘𝑋 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
142139, 141eqtr3id 2778 . . . . . . . . . . 11 (𝑛 = (𝐹f𝑚) → 𝑌 = ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)
143136, 142mpteq12dv 5189 . . . . . . . . . 10 (𝑛 = (𝐹f𝑚) → (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌) = (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))
144143oveq2d 7385 . . . . . . . . 9 (𝑛 = (𝐹f𝑚) → (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)) = (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
14577, 133, 134, 144fmptco 7083 . . . . . . . 8 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))))
146145coeq1d 5815 . . . . . . 7 (𝜑 → (((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))))
147 coires1 6225 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆)
148 ssid 3966 . . . . . . . . . 10 𝑆𝑆
149 resmpt 5997 . . . . . . . . . 10 (𝑆𝑆 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
150148, 149ax-mp 5 . . . . . . . . 9 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ↾ 𝑆) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
151147, 150eqtri 2752 . . . . . . . 8 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
152151a1i 11 . . . . . . 7 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ ( I ↾ 𝑆)) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
153132, 146, 1523eqtr3d 2772 . . . . . 6 (𝜑 → ((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
154153feq1d 6652 . . . . 5 (𝜑 → (((𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚))):𝑆𝐵 ↔ (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))):𝑆𝐵))
155127, 154mpbid 232 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))):𝑆𝐵)
156 rabexg 5287 . . . . . . . 8 (𝐷 ∈ V → {𝑦𝐷𝑦r𝐹} ∈ V)
157105, 156mp1i 13 . . . . . . 7 (𝜑 → {𝑦𝐷𝑦r𝐹} ∈ V)
1582, 157eqeltrid 2832 . . . . . 6 (𝜑𝑆 ∈ V)
159158mptexd 7180 . . . . 5 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∈ V)
160 funmpt 6538 . . . . . 6 Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
161160a1i 11 . . . . 5 (𝜑 → Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))))
162 fvexd 6855 . . . . 5 (𝜑 → (0g𝐺) ∈ V)
163 suppssdm 8133 . . . . . . 7 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
164 eqid 2729 . . . . . . . 8 (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) = (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))
165164dmmptss 6202 . . . . . . 7 dom (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ⊆ 𝑆
166163, 165sstri 3953 . . . . . 6 ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆
167166a1i 11 . . . . 5 (𝜑 → ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)
168 suppssfifsupp 9307 . . . . 5 ((((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∈ V ∧ Fun (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∧ (0g𝐺) ∈ V) ∧ (𝑆 ∈ Fin ∧ ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) supp (0g𝐺)) ⊆ 𝑆)) → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) finSupp (0g𝐺))
169159, 161, 162, 75, 167, 168syl32anc 1380 . . . 4 (𝜑 → (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) finSupp (0g𝐺))
1704, 72, 5, 75, 155, 169, 123gsumf1o 19822 . . 3 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))))
171145oveq2d 7385 . . 3 (𝜑 → (𝐺 Σg ((𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌))) ∘ (𝑚𝑆 ↦ (𝐹f𝑚)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
172170, 171eqtrd 2764 . 2 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑚𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑚)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
1735adantr 480 . . . . . 6 ((𝜑𝑗𝑆) → 𝐺 ∈ CMnd)
174105a1i 11 . . . . . . . 8 ((𝜑𝑗𝑆) → 𝐷 ∈ V)
175 rabexg 5287 . . . . . . . 8 (𝐷 ∈ V → {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V)
176 mptexg 7177 . . . . . . . 8 ({𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ V → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V)
177174, 175, 1763syl 18 . . . . . . 7 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V)
178 funmpt 6538 . . . . . . . 8 Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
179178a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋))
180 fvexd 6855 . . . . . . 7 ((𝜑𝑗𝑆) → (0g𝐺) ∈ V)
181 suppssdm 8133 . . . . . . . . 9 ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ dom (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
182 eqid 2729 . . . . . . . . . 10 (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) = (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)
183182dmmptss 6202 . . . . . . . . 9 dom (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
184181, 183sstri 3953 . . . . . . . 8 ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)}
185184a1i 11 . . . . . . 7 ((𝜑𝑗𝑆) → ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})
186 suppssfifsupp 9307 . . . . . . 7 ((((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∈ V ∧ Fun (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∧ (0g𝐺) ∈ V) ∧ ({𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ∈ Fin ∧ ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) supp (0g𝐺)) ⊆ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)})) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) finSupp (0g𝐺))
187177, 179, 180, 91, 185, 186syl32anc 1380 . . . . . 6 ((𝜑𝑗𝑆) → (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) finSupp (0g𝐺))
1884, 72, 173, 91, 9, 187, 16gsumf1o 19822 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)))))
18965oveq2d 7385 . . . . 5 ((𝜑𝑗𝑆) → (𝐺 Σg ((𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋) ∘ (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑗) ∘f𝑚)))) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
190188, 189eqtrd 2764 . . . 4 ((𝜑𝑗𝑆) → (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)) = (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))
191190mpteq2dva 5195 . . 3 (𝜑 → (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋))) = (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋))))
192191oveq2d 7385 . 2 (𝜑 → (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑚 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ ((𝐹f𝑚) ∘f𝑗) / 𝑘𝑋)))))
193100, 172, 1923eqtr4d 2774 1 (𝜑 → (𝐺 Σg (𝑛𝑆 ↦ (𝐺 Σg (𝑗 ∈ {𝑥𝐷𝑥r𝑛} ↦ 𝑌)))) = (𝐺 Σg (𝑗𝑆 ↦ (𝐺 Σg (𝑘 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑗)} ↦ 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  csb 3859  wss 3911   class class class wbr 5102  cmpt 5183   I cid 5525   × cxp 5629  ccnv 5630  dom cdm 5631  cres 5633  cima 5634  ccom 5635  Fun wfun 6493  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  cmpo 7371  f cof 7631  r cofr 7632   supp csupp 8116  m cmap 8776  Fincfn 8895   finSupp cfsupp 9288  cc 11042  cle 11185  cmin 11381  cn 12162  0cn0 12418  Basecbs 17155  0gc0g 17378   Σg cgsu 17379  CMndccmn 19686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688
This theorem is referenced by:  psrass1  21849
  Copyright terms: Public domain W3C validator