MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiaglem Structured version   Visualization version   GIF version

Theorem gsumbagdiaglem 20754
Description: Lemma for gsumbagdiag 20755. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
gsumbagdiag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
gsumbagdiag.s 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiag.f (𝜑𝐹𝐷)
Assertion
Ref Expression
gsumbagdiaglem ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌𝑆𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑌)}))
Distinct variable groups:   𝑥,𝐷   𝑦,𝐷   𝑓,𝐹   𝑥,𝐹   𝑦,𝐹   𝑓,𝐼   𝑓,𝑋   𝑥,𝑋   𝑦,𝑋   𝑓,𝑌   𝑥,𝑌   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑥,𝑦,𝑓)   𝐼(𝑥,𝑦)

Proof of Theorem gsumbagdiaglem
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 773 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})
2 breq1 5033 . . . . . 6 (𝑥 = 𝑌 → (𝑥r ≤ (𝐹f𝑋) ↔ 𝑌r ≤ (𝐹f𝑋)))
32elrab 3588 . . . . 5 (𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)} ↔ (𝑌𝐷𝑌r ≤ (𝐹f𝑋)))
41, 3sylib 221 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌𝐷𝑌r ≤ (𝐹f𝑋)))
54simpld 498 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌𝐷)
64simprd 499 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌r ≤ (𝐹f𝑋))
7 gsumbagdiag.f . . . . . . 7 (𝜑𝐹𝐷)
87adantr 484 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐹𝐷)
9 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋𝑆)
10 breq1 5033 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
11 gsumbagdiag.s . . . . . . . . . 10 𝑆 = {𝑦𝐷𝑦r𝐹}
1210, 11elrab2 3591 . . . . . . . . 9 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
139, 12sylib 221 . . . . . . . 8 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑋𝐷𝑋r𝐹))
1413simpld 498 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋𝐷)
15 gsumbagdiag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1615psrbagf 20731 . . . . . . 7 (𝑋𝐷𝑋:𝐼⟶ℕ0)
1714, 16syl 17 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋:𝐼⟶ℕ0)
1813simprd 499 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋r𝐹)
1915psrbagcon 20743 . . . . . 6 ((𝐹𝐷𝑋:𝐼⟶ℕ0𝑋r𝐹) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
208, 17, 18, 19syl3anc 1372 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
2120simprd 499 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋) ∘r𝐹)
2215psrbagf 20731 . . . . . . . 8 (𝐹𝐷𝐹:𝐼⟶ℕ0)
238, 22syl 17 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐹:𝐼⟶ℕ0)
2423ffnd 6505 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐹 Fn 𝐼)
258, 24fndmexd 7637 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐼 ∈ V)
2615psrbagf 20731 . . . . . 6 (𝑌𝐷𝑌:𝐼⟶ℕ0)
275, 26syl 17 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌:𝐼⟶ℕ0)
2820simpld 498 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋) ∈ 𝐷)
2915psrbagf 20731 . . . . . 6 ((𝐹f𝑋) ∈ 𝐷 → (𝐹f𝑋):𝐼⟶ℕ0)
3028, 29syl 17 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋):𝐼⟶ℕ0)
31 nn0re 11985 . . . . . . 7 (𝑢 ∈ ℕ0𝑢 ∈ ℝ)
32 nn0re 11985 . . . . . . 7 (𝑣 ∈ ℕ0𝑣 ∈ ℝ)
33 nn0re 11985 . . . . . . 7 (𝑤 ∈ ℕ0𝑤 ∈ ℝ)
34 letr 10812 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
3531, 32, 33, 34syl3an 1161 . . . . . 6 ((𝑢 ∈ ℕ0𝑣 ∈ ℕ0𝑤 ∈ ℕ0) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
3635adantl 485 . . . . 5 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ (𝑢 ∈ ℕ0𝑣 ∈ ℕ0𝑤 ∈ ℕ0)) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
3725, 27, 30, 23, 36caoftrn 7462 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → ((𝑌r ≤ (𝐹f𝑋) ∧ (𝐹f𝑋) ∘r𝐹) → 𝑌r𝐹))
386, 21, 37mp2and 699 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌r𝐹)
39 breq1 5033 . . . 4 (𝑦 = 𝑌 → (𝑦r𝐹𝑌r𝐹))
4039, 11elrab2 3591 . . 3 (𝑌𝑆 ↔ (𝑌𝐷𝑌r𝐹))
415, 38, 40sylanbrc 586 . 2 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌𝑆)
42 breq1 5033 . . 3 (𝑥 = 𝑋 → (𝑥r ≤ (𝐹f𝑌) ↔ 𝑋r ≤ (𝐹f𝑌)))
4317ffvelrnda 6861 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
4427ffvelrnda 6861 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
4523ffvelrnda 6861 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
46 nn0re 11985 . . . . . . . 8 ((𝑋𝑧) ∈ ℕ0 → (𝑋𝑧) ∈ ℝ)
47 nn0re 11985 . . . . . . . 8 ((𝑌𝑧) ∈ ℕ0 → (𝑌𝑧) ∈ ℝ)
48 nn0re 11985 . . . . . . . 8 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℝ)
49 leaddsub2 11195 . . . . . . . . 9 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑋𝑧) + (𝑌𝑧)) ≤ (𝐹𝑧) ↔ (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧))))
50 leaddsub 11194 . . . . . . . . 9 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑋𝑧) + (𝑌𝑧)) ≤ (𝐹𝑧) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5149, 50bitr3d 284 . . . . . . . 8 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5246, 47, 48, 51syl3an 1161 . . . . . . 7 (((𝑋𝑧) ∈ ℕ0 ∧ (𝑌𝑧) ∈ ℕ0 ∧ (𝐹𝑧) ∈ ℕ0) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5343, 44, 45, 52syl3anc 1372 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5453ralbidva 3108 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (∀𝑧𝐼 (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
55 ovexd 7205 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑋𝑧)) ∈ V)
5627feqmptd 6737 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
5717ffnd 6505 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋 Fn 𝐼)
58 inidm 4109 . . . . . . 7 (𝐼𝐼) = 𝐼
59 eqidd 2739 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝐹𝑧) = (𝐹𝑧))
60 eqidd 2739 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑋𝑧) = (𝑋𝑧))
6124, 57, 25, 25, 58, 59, 60offval 7433 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑋𝑧))))
6225, 44, 55, 56, 61ofrfval2 7445 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌r ≤ (𝐹f𝑋) ↔ ∀𝑧𝐼 (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧))))
63 ovexd 7205 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑌𝑧)) ∈ V)
6417feqmptd 6737 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
6527ffnd 6505 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌 Fn 𝐼)
66 eqidd 2739 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑌𝑧) = (𝑌𝑧))
6724, 65, 25, 25, 58, 59, 66offval 7433 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑌) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑌𝑧))))
6825, 43, 63, 64, 67ofrfval2 7445 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑋r ≤ (𝐹f𝑌) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
6954, 62, 683bitr4d 314 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌r ≤ (𝐹f𝑋) ↔ 𝑋r ≤ (𝐹f𝑌)))
706, 69mpbid 235 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋r ≤ (𝐹f𝑌))
7142, 14, 70elrabd 3590 . 2 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑌)})
7241, 71jca 515 1 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌𝑆𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3053  {crab 3057  Vcvv 3398   class class class wbr 5030  ccnv 5524  cima 5528  wf 6335  cfv 6339  (class class class)co 7170  f cof 7423  r cofr 7424  m cmap 8437  Fincfn 8555  cr 10614   + caddc 10618  cle 10754  cmin 10948  cn 11716  0cn0 11976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-ofr 7426  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977
This theorem is referenced by:  gsumbagdiag  20755  psrass1lem  20756
  Copyright terms: Public domain W3C validator