MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumbagdiaglem Structured version   Visualization version   GIF version

Theorem gsumbagdiaglem 21890
Description: Lemma for gsumbagdiag 21891. (Contributed by Mario Carneiro, 5-Jan-2015.) Remove a sethood hypothesis. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
gsumbagdiag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
gsumbagdiag.s 𝑆 = {𝑦𝐷𝑦r𝐹}
gsumbagdiag.f (𝜑𝐹𝐷)
Assertion
Ref Expression
gsumbagdiaglem ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌𝑆𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑌)}))
Distinct variable groups:   𝑥,𝐷   𝑦,𝐷   𝑓,𝐹   𝑥,𝐹   𝑦,𝐹   𝑓,𝐼   𝑓,𝑋   𝑥,𝑋   𝑦,𝑋   𝑓,𝑌   𝑥,𝑌   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓)   𝐷(𝑓)   𝑆(𝑥,𝑦,𝑓)   𝐼(𝑥,𝑦)

Proof of Theorem gsumbagdiaglem
Dummy variables 𝑢 𝑣 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 772 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})
2 breq1 5122 . . . . . 6 (𝑥 = 𝑌 → (𝑥r ≤ (𝐹f𝑋) ↔ 𝑌r ≤ (𝐹f𝑋)))
32elrab 3671 . . . . 5 (𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)} ↔ (𝑌𝐷𝑌r ≤ (𝐹f𝑋)))
41, 3sylib 218 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌𝐷𝑌r ≤ (𝐹f𝑋)))
54simpld 494 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌𝐷)
64simprd 495 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌r ≤ (𝐹f𝑋))
7 gsumbagdiag.f . . . . . . 7 (𝜑𝐹𝐷)
87adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐹𝐷)
9 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋𝑆)
10 breq1 5122 . . . . . . . . . 10 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
11 gsumbagdiag.s . . . . . . . . . 10 𝑆 = {𝑦𝐷𝑦r𝐹}
1210, 11elrab2 3674 . . . . . . . . 9 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
139, 12sylib 218 . . . . . . . 8 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑋𝐷𝑋r𝐹))
1413simpld 494 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋𝐷)
15 gsumbagdiag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
1615psrbagf 21878 . . . . . . 7 (𝑋𝐷𝑋:𝐼⟶ℕ0)
1714, 16syl 17 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋:𝐼⟶ℕ0)
1813simprd 495 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋r𝐹)
1915psrbagcon 21885 . . . . . 6 ((𝐹𝐷𝑋:𝐼⟶ℕ0𝑋r𝐹) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
208, 17, 18, 19syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
2120simprd 495 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋) ∘r𝐹)
2215psrbagf 21878 . . . . . . . 8 (𝐹𝐷𝐹:𝐼⟶ℕ0)
238, 22syl 17 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐹:𝐼⟶ℕ0)
2423ffnd 6707 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐹 Fn 𝐼)
258, 24fndmexd 7900 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝐼 ∈ V)
2615psrbagf 21878 . . . . . 6 (𝑌𝐷𝑌:𝐼⟶ℕ0)
275, 26syl 17 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌:𝐼⟶ℕ0)
2820simpld 494 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋) ∈ 𝐷)
2915psrbagf 21878 . . . . . 6 ((𝐹f𝑋) ∈ 𝐷 → (𝐹f𝑋):𝐼⟶ℕ0)
3028, 29syl 17 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋):𝐼⟶ℕ0)
31 nn0re 12510 . . . . . . 7 (𝑢 ∈ ℕ0𝑢 ∈ ℝ)
32 nn0re 12510 . . . . . . 7 (𝑣 ∈ ℕ0𝑣 ∈ ℝ)
33 nn0re 12510 . . . . . . 7 (𝑤 ∈ ℕ0𝑤 ∈ ℝ)
34 letr 11329 . . . . . . 7 ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
3531, 32, 33, 34syl3an 1160 . . . . . 6 ((𝑢 ∈ ℕ0𝑣 ∈ ℕ0𝑤 ∈ ℕ0) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
3635adantl 481 . . . . 5 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ (𝑢 ∈ ℕ0𝑣 ∈ ℕ0𝑤 ∈ ℕ0)) → ((𝑢𝑣𝑣𝑤) → 𝑢𝑤))
3725, 27, 30, 23, 36caoftrn 7712 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → ((𝑌r ≤ (𝐹f𝑋) ∧ (𝐹f𝑋) ∘r𝐹) → 𝑌r𝐹))
386, 21, 37mp2and 699 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌r𝐹)
39 breq1 5122 . . . 4 (𝑦 = 𝑌 → (𝑦r𝐹𝑌r𝐹))
4039, 11elrab2 3674 . . 3 (𝑌𝑆 ↔ (𝑌𝐷𝑌r𝐹))
415, 38, 40sylanbrc 583 . 2 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌𝑆)
42 breq1 5122 . . 3 (𝑥 = 𝑋 → (𝑥r ≤ (𝐹f𝑌) ↔ 𝑋r ≤ (𝐹f𝑌)))
4317ffvelcdmda 7074 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑋𝑧) ∈ ℕ0)
4427ffvelcdmda 7074 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑌𝑧) ∈ ℕ0)
4523ffvelcdmda 7074 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝐹𝑧) ∈ ℕ0)
46 nn0re 12510 . . . . . . . 8 ((𝑋𝑧) ∈ ℕ0 → (𝑋𝑧) ∈ ℝ)
47 nn0re 12510 . . . . . . . 8 ((𝑌𝑧) ∈ ℕ0 → (𝑌𝑧) ∈ ℝ)
48 nn0re 12510 . . . . . . . 8 ((𝐹𝑧) ∈ ℕ0 → (𝐹𝑧) ∈ ℝ)
49 leaddsub2 11714 . . . . . . . . 9 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑋𝑧) + (𝑌𝑧)) ≤ (𝐹𝑧) ↔ (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧))))
50 leaddsub 11713 . . . . . . . . 9 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝑋𝑧) + (𝑌𝑧)) ≤ (𝐹𝑧) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5149, 50bitr3d 281 . . . . . . . 8 (((𝑋𝑧) ∈ ℝ ∧ (𝑌𝑧) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5246, 47, 48, 51syl3an 1160 . . . . . . 7 (((𝑋𝑧) ∈ ℕ0 ∧ (𝑌𝑧) ∈ ℕ0 ∧ (𝐹𝑧) ∈ ℕ0) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5343, 44, 45, 52syl3anc 1373 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → ((𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
5453ralbidva 3161 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (∀𝑧𝐼 (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧)) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
55 ovexd 7440 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑋𝑧)) ∈ V)
5627feqmptd 6947 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌 = (𝑧𝐼 ↦ (𝑌𝑧)))
5717ffnd 6707 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋 Fn 𝐼)
58 inidm 4202 . . . . . . 7 (𝐼𝐼) = 𝐼
59 eqidd 2736 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝐹𝑧) = (𝐹𝑧))
60 eqidd 2736 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑋𝑧) = (𝑋𝑧))
6124, 57, 25, 25, 58, 59, 60offval 7680 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑋) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑋𝑧))))
6225, 44, 55, 56, 61ofrfval2 7692 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌r ≤ (𝐹f𝑋) ↔ ∀𝑧𝐼 (𝑌𝑧) ≤ ((𝐹𝑧) − (𝑋𝑧))))
63 ovexd 7440 . . . . . 6 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → ((𝐹𝑧) − (𝑌𝑧)) ∈ V)
6417feqmptd 6947 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋 = (𝑧𝐼 ↦ (𝑋𝑧)))
6527ffnd 6707 . . . . . . 7 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑌 Fn 𝐼)
66 eqidd 2736 . . . . . . 7 (((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) ∧ 𝑧𝐼) → (𝑌𝑧) = (𝑌𝑧))
6724, 65, 25, 25, 58, 59, 66offval 7680 . . . . . 6 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝐹f𝑌) = (𝑧𝐼 ↦ ((𝐹𝑧) − (𝑌𝑧))))
6825, 43, 63, 64, 67ofrfval2 7692 . . . . 5 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑋r ≤ (𝐹f𝑌) ↔ ∀𝑧𝐼 (𝑋𝑧) ≤ ((𝐹𝑧) − (𝑌𝑧))))
6954, 62, 683bitr4d 311 . . . 4 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌r ≤ (𝐹f𝑋) ↔ 𝑋r ≤ (𝐹f𝑌)))
706, 69mpbid 232 . . 3 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋r ≤ (𝐹f𝑌))
7142, 14, 70elrabd 3673 . 2 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → 𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑌)})
7241, 71jca 511 1 ((𝜑 ∧ (𝑋𝑆𝑌 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑋)})) → (𝑌𝑆𝑋 ∈ {𝑥𝐷𝑥r ≤ (𝐹f𝑌)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459   class class class wbr 5119  ccnv 5653  cima 5657  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669  r cofr 7670  m cmap 8840  Fincfn 8959  cr 11128   + caddc 11132  cle 11270  cmin 11466  cn 12240  0cn0 12501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502
This theorem is referenced by:  gsumbagdiag  21891  psrass1lem  21892
  Copyright terms: Public domain W3C validator