| Step | Hyp | Ref
| Expression |
| 1 | | simprr 773 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)}) |
| 2 | | breq1 5146 |
. . . . . 6
⊢ (𝑥 = 𝑌 → (𝑥 ∘r ≤ (𝐹 ∘f − 𝑋) ↔ 𝑌 ∘r ≤ (𝐹 ∘f − 𝑋))) |
| 3 | 2 | elrab 3692 |
. . . . 5
⊢ (𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)} ↔ (𝑌 ∈ 𝐷 ∧ 𝑌 ∘r ≤ (𝐹 ∘f − 𝑋))) |
| 4 | 1, 3 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝑌 ∈ 𝐷 ∧ 𝑌 ∘r ≤ (𝐹 ∘f − 𝑋))) |
| 5 | 4 | simpld 494 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑌 ∈ 𝐷) |
| 6 | 4 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑌 ∘r ≤ (𝐹 ∘f − 𝑋)) |
| 7 | | gsumbagdiag.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| 8 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝐹 ∈ 𝐷) |
| 9 | | simprl 771 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑋 ∈ 𝑆) |
| 10 | | breq1 5146 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → (𝑦 ∘r ≤ 𝐹 ↔ 𝑋 ∘r ≤ 𝐹)) |
| 11 | | gsumbagdiag.s |
. . . . . . . . . 10
⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
| 12 | 10, 11 | elrab2 3695 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹)) |
| 13 | 9, 12 | sylib 218 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹)) |
| 14 | 13 | simpld 494 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑋 ∈ 𝐷) |
| 15 | | gsumbagdiag.d |
. . . . . . . 8
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 16 | 15 | psrbagf 21938 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐷 → 𝑋:𝐼⟶ℕ0) |
| 17 | 14, 16 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑋:𝐼⟶ℕ0) |
| 18 | 13 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑋 ∘r ≤ 𝐹) |
| 19 | 15 | psrbagcon 21945 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑋:𝐼⟶ℕ0 ∧ 𝑋 ∘r ≤ 𝐹) → ((𝐹 ∘f − 𝑋) ∈ 𝐷 ∧ (𝐹 ∘f − 𝑋) ∘r ≤ 𝐹)) |
| 20 | 8, 17, 18, 19 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → ((𝐹 ∘f − 𝑋) ∈ 𝐷 ∧ (𝐹 ∘f − 𝑋) ∘r ≤ 𝐹)) |
| 21 | 20 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝐹 ∘f − 𝑋) ∘r ≤ 𝐹) |
| 22 | 15 | psrbagf 21938 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| 23 | 8, 22 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝐹:𝐼⟶ℕ0) |
| 24 | 23 | ffnd 6737 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝐹 Fn 𝐼) |
| 25 | 8, 24 | fndmexd 7926 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝐼 ∈ V) |
| 26 | 15 | psrbagf 21938 |
. . . . . 6
⊢ (𝑌 ∈ 𝐷 → 𝑌:𝐼⟶ℕ0) |
| 27 | 5, 26 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑌:𝐼⟶ℕ0) |
| 28 | 20 | simpld 494 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝐹 ∘f − 𝑋) ∈ 𝐷) |
| 29 | 15 | psrbagf 21938 |
. . . . . 6
⊢ ((𝐹 ∘f −
𝑋) ∈ 𝐷 → (𝐹 ∘f − 𝑋):𝐼⟶ℕ0) |
| 30 | 28, 29 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝐹 ∘f − 𝑋):𝐼⟶ℕ0) |
| 31 | | nn0re 12535 |
. . . . . . 7
⊢ (𝑢 ∈ ℕ0
→ 𝑢 ∈
ℝ) |
| 32 | | nn0re 12535 |
. . . . . . 7
⊢ (𝑣 ∈ ℕ0
→ 𝑣 ∈
ℝ) |
| 33 | | nn0re 12535 |
. . . . . . 7
⊢ (𝑤 ∈ ℕ0
→ 𝑤 ∈
ℝ) |
| 34 | | letr 11355 |
. . . . . . 7
⊢ ((𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ) → ((𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤) → 𝑢 ≤ 𝑤)) |
| 35 | 31, 32, 33, 34 | syl3an 1161 |
. . . . . 6
⊢ ((𝑢 ∈ ℕ0
∧ 𝑣 ∈
ℕ0 ∧ 𝑤
∈ ℕ0) → ((𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤) → 𝑢 ≤ 𝑤)) |
| 36 | 35 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) ∧ (𝑢 ∈ ℕ0 ∧ 𝑣 ∈ ℕ0
∧ 𝑤 ∈
ℕ0)) → ((𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤) → 𝑢 ≤ 𝑤)) |
| 37 | 25, 27, 30, 23, 36 | caoftrn 7738 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → ((𝑌 ∘r ≤ (𝐹 ∘f − 𝑋) ∧ (𝐹 ∘f − 𝑋) ∘r ≤ 𝐹) → 𝑌 ∘r ≤ 𝐹)) |
| 38 | 6, 21, 37 | mp2and 699 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑌 ∘r ≤ 𝐹) |
| 39 | | breq1 5146 |
. . . 4
⊢ (𝑦 = 𝑌 → (𝑦 ∘r ≤ 𝐹 ↔ 𝑌 ∘r ≤ 𝐹)) |
| 40 | 39, 11 | elrab2 3695 |
. . 3
⊢ (𝑌 ∈ 𝑆 ↔ (𝑌 ∈ 𝐷 ∧ 𝑌 ∘r ≤ 𝐹)) |
| 41 | 5, 38, 40 | sylanbrc 583 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑌 ∈ 𝑆) |
| 42 | | breq1 5146 |
. . 3
⊢ (𝑥 = 𝑋 → (𝑥 ∘r ≤ (𝐹 ∘f − 𝑌) ↔ 𝑋 ∘r ≤ (𝐹 ∘f − 𝑌))) |
| 43 | 17 | ffvelcdmda 7104 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) ∈
ℕ0) |
| 44 | 27 | ffvelcdmda 7104 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) ∧ 𝑧 ∈ 𝐼) → (𝑌‘𝑧) ∈
ℕ0) |
| 45 | 23 | ffvelcdmda 7104 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) ∈
ℕ0) |
| 46 | | nn0re 12535 |
. . . . . . . 8
⊢ ((𝑋‘𝑧) ∈ ℕ0 → (𝑋‘𝑧) ∈ ℝ) |
| 47 | | nn0re 12535 |
. . . . . . . 8
⊢ ((𝑌‘𝑧) ∈ ℕ0 → (𝑌‘𝑧) ∈ ℝ) |
| 48 | | nn0re 12535 |
. . . . . . . 8
⊢ ((𝐹‘𝑧) ∈ ℕ0 → (𝐹‘𝑧) ∈ ℝ) |
| 49 | | leaddsub2 11740 |
. . . . . . . . 9
⊢ (((𝑋‘𝑧) ∈ ℝ ∧ (𝑌‘𝑧) ∈ ℝ ∧ (𝐹‘𝑧) ∈ ℝ) → (((𝑋‘𝑧) + (𝑌‘𝑧)) ≤ (𝐹‘𝑧) ↔ (𝑌‘𝑧) ≤ ((𝐹‘𝑧) − (𝑋‘𝑧)))) |
| 50 | | leaddsub 11739 |
. . . . . . . . 9
⊢ (((𝑋‘𝑧) ∈ ℝ ∧ (𝑌‘𝑧) ∈ ℝ ∧ (𝐹‘𝑧) ∈ ℝ) → (((𝑋‘𝑧) + (𝑌‘𝑧)) ≤ (𝐹‘𝑧) ↔ (𝑋‘𝑧) ≤ ((𝐹‘𝑧) − (𝑌‘𝑧)))) |
| 51 | 49, 50 | bitr3d 281 |
. . . . . . . 8
⊢ (((𝑋‘𝑧) ∈ ℝ ∧ (𝑌‘𝑧) ∈ ℝ ∧ (𝐹‘𝑧) ∈ ℝ) → ((𝑌‘𝑧) ≤ ((𝐹‘𝑧) − (𝑋‘𝑧)) ↔ (𝑋‘𝑧) ≤ ((𝐹‘𝑧) − (𝑌‘𝑧)))) |
| 52 | 46, 47, 48, 51 | syl3an 1161 |
. . . . . . 7
⊢ (((𝑋‘𝑧) ∈ ℕ0 ∧ (𝑌‘𝑧) ∈ ℕ0 ∧ (𝐹‘𝑧) ∈ ℕ0) → ((𝑌‘𝑧) ≤ ((𝐹‘𝑧) − (𝑋‘𝑧)) ↔ (𝑋‘𝑧) ≤ ((𝐹‘𝑧) − (𝑌‘𝑧)))) |
| 53 | 43, 44, 45, 52 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) ∧ 𝑧 ∈ 𝐼) → ((𝑌‘𝑧) ≤ ((𝐹‘𝑧) − (𝑋‘𝑧)) ↔ (𝑋‘𝑧) ≤ ((𝐹‘𝑧) − (𝑌‘𝑧)))) |
| 54 | 53 | ralbidva 3176 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (∀𝑧 ∈ 𝐼 (𝑌‘𝑧) ≤ ((𝐹‘𝑧) − (𝑋‘𝑧)) ↔ ∀𝑧 ∈ 𝐼 (𝑋‘𝑧) ≤ ((𝐹‘𝑧) − (𝑌‘𝑧)))) |
| 55 | | ovexd 7466 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑧) − (𝑋‘𝑧)) ∈ V) |
| 56 | 27 | feqmptd 6977 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑌 = (𝑧 ∈ 𝐼 ↦ (𝑌‘𝑧))) |
| 57 | 17 | ffnd 6737 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑋 Fn 𝐼) |
| 58 | | inidm 4227 |
. . . . . . 7
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 59 | | eqidd 2738 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
| 60 | | eqidd 2738 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) ∧ 𝑧 ∈ 𝐼) → (𝑋‘𝑧) = (𝑋‘𝑧)) |
| 61 | 24, 57, 25, 25, 58, 59, 60 | offval 7706 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝐹 ∘f − 𝑋) = (𝑧 ∈ 𝐼 ↦ ((𝐹‘𝑧) − (𝑋‘𝑧)))) |
| 62 | 25, 44, 55, 56, 61 | ofrfval2 7718 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝑌 ∘r ≤ (𝐹 ∘f − 𝑋) ↔ ∀𝑧 ∈ 𝐼 (𝑌‘𝑧) ≤ ((𝐹‘𝑧) − (𝑋‘𝑧)))) |
| 63 | | ovexd 7466 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑧) − (𝑌‘𝑧)) ∈ V) |
| 64 | 17 | feqmptd 6977 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑋 = (𝑧 ∈ 𝐼 ↦ (𝑋‘𝑧))) |
| 65 | 27 | ffnd 6737 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑌 Fn 𝐼) |
| 66 | | eqidd 2738 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) ∧ 𝑧 ∈ 𝐼) → (𝑌‘𝑧) = (𝑌‘𝑧)) |
| 67 | 24, 65, 25, 25, 58, 59, 66 | offval 7706 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝐹 ∘f − 𝑌) = (𝑧 ∈ 𝐼 ↦ ((𝐹‘𝑧) − (𝑌‘𝑧)))) |
| 68 | 25, 43, 63, 64, 67 | ofrfval2 7718 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝑋 ∘r ≤ (𝐹 ∘f − 𝑌) ↔ ∀𝑧 ∈ 𝐼 (𝑋‘𝑧) ≤ ((𝐹‘𝑧) − (𝑌‘𝑧)))) |
| 69 | 54, 62, 68 | 3bitr4d 311 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝑌 ∘r ≤ (𝐹 ∘f − 𝑋) ↔ 𝑋 ∘r ≤ (𝐹 ∘f − 𝑌))) |
| 70 | 6, 69 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑋 ∘r ≤ (𝐹 ∘f − 𝑌)) |
| 71 | 42, 14, 70 | elrabd 3694 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑌)}) |
| 72 | 41, 71 | jca 511 |
1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑋)})) → (𝑌 ∈ 𝑆 ∧ 𝑋 ∈ {𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ (𝐹 ∘f − 𝑌)})) |