Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version |
Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | dmexg 7724 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: fndmexd 7727 unxpwdom2 9277 wemapwe 9385 imadomg 10221 fpwwe2lem11 10328 fpwwe2lem12 10329 hashdmpropge2 14125 prdsplusg 17086 prdsmulr 17087 prdsvsca 17088 prdshom 17095 ssclem 17448 subsubc 17484 efgrcl 19236 dprdgrp 19523 dprdf 19524 dprdssv 19534 f1lindf 20939 decpmatval0 21821 pmatcollpw3lem 21840 ordtrest2lem 22262 ordtrest2 22263 mbfmulc2re 24717 mbfneg 24719 dvnf 24996 dvnbss 24997 dchrptlem3 26319 gsummpt2d 31211 cycpmco2lem5 31299 cycpmconjslem2 31324 trclubgNEW 41115 omecl 43931 sssmf 44161 mbfresmf 44162 smfpimltxr 44170 smfpimgtxr 44202 smfres 44211 smfco 44223 isomgreqve 45165 |
Copyright terms: Public domain | W3C validator |