![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version |
Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | dmexg 7923 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 dom cdm 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-cnv 5696 df-dm 5698 df-rn 5699 |
This theorem is referenced by: fndmexd 7926 unxpwdom2 9625 wemapwe 9734 imadomg 10571 fpwwe2lem11 10678 fpwwe2lem12 10679 hashdmpropge2 14518 prdsplusg 17504 prdsmulr 17505 prdsvsca 17506 prdshom 17513 ssclem 17866 subsubc 17903 efgrcl 19747 dprdgrp 20039 dprdf 20040 dprdssv 20050 f1lindf 21859 decpmatval0 22785 pmatcollpw3lem 22804 ordtrest2lem 23226 ordtrest2 23227 mbfmulc2re 25696 mbfneg 25698 dvnf 25977 dvnbss 25978 dchrptlem3 27324 gsummpt2d 33034 gsumfs2d 33040 cycpmco2lem5 33132 cycpmconjslem2 33157 trclubgNEW 43607 omecl 46458 sssmf 46693 mbfresmf 46694 smfpimltxr 46702 smfpimgtxr 46735 smfres 46745 smfco 46757 |
Copyright terms: Public domain | W3C validator |