Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version |
Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | dmexg 7744 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 Vcvv 3431 dom cdm 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-cnv 5598 df-dm 5600 df-rn 5601 |
This theorem is referenced by: fndmexd 7747 unxpwdom2 9325 wemapwe 9433 imadomg 10291 fpwwe2lem11 10398 fpwwe2lem12 10399 hashdmpropge2 14195 prdsplusg 17167 prdsmulr 17168 prdsvsca 17169 prdshom 17176 ssclem 17529 subsubc 17566 efgrcl 19319 dprdgrp 19606 dprdf 19607 dprdssv 19617 f1lindf 21027 decpmatval0 21911 pmatcollpw3lem 21930 ordtrest2lem 22352 ordtrest2 22353 mbfmulc2re 24810 mbfneg 24812 dvnf 25089 dvnbss 25090 dchrptlem3 26412 gsummpt2d 31305 cycpmco2lem5 31393 cycpmconjslem2 31418 trclubgNEW 41196 omecl 44012 sssmf 44242 mbfresmf 44243 smfpimltxr 44251 smfpimgtxr 44283 smfres 44292 smfco 44304 isomgreqve 45246 |
Copyright terms: Public domain | W3C validator |