| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | dmexg 7857 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: fndmexd 7860 unxpwdom2 9517 wemapwe 9626 imadomg 10463 fpwwe2lem11 10570 fpwwe2lem12 10571 hashdmpropge2 14424 prdsplusg 17397 prdsmulr 17398 prdsvsca 17399 prdshom 17406 ssclem 17757 subsubc 17791 efgrcl 19621 dprdgrp 19913 dprdf 19914 dprdssv 19924 f1lindf 21707 decpmatval0 22627 pmatcollpw3lem 22646 ordtrest2lem 23066 ordtrest2 23067 mbfmulc2re 25525 mbfneg 25527 dvnf 25805 dvnbss 25806 dchrptlem3 27153 gsummpt2d 32962 gsumfs2d 32968 cycpmco2lem5 33060 cycpmconjslem2 33085 trclubgNEW 43580 omecl 46474 sssmf 46709 mbfresmf 46710 smfpimltxr 46718 smfpimgtxr 46751 smfres 46761 smfco 46773 iinfssc 49019 |
| Copyright terms: Public domain | W3C validator |