| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | dmexg 7840 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 dom cdm 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: fndmexd 7843 unxpwdom2 9485 wemapwe 9598 imadomg 10436 fpwwe2lem11 10543 fpwwe2lem12 10544 hashdmpropge2 14397 prdsplusg 17369 prdsmulr 17370 prdsvsca 17371 prdshom 17378 ssclem 17734 subsubc 17768 efgrcl 19635 dprdgrp 19927 dprdf 19928 dprdssv 19938 f1lindf 21768 decpmatval0 22699 pmatcollpw3lem 22718 ordtrest2lem 23138 ordtrest2 23139 mbfmulc2re 25596 mbfneg 25598 dvnf 25876 dvnbss 25877 dchrptlem3 27224 gsummpt2d 33060 gsumfs2d 33072 cycpmco2lem5 33140 cycpmconjslem2 33165 trclubgNEW 43775 omecl 46663 sssmf 46898 mbfresmf 46899 smfpimltxr 46907 smfpimgtxr 46940 smfres 46950 smfco 46962 iinfssc 49218 |
| Copyright terms: Public domain | W3C validator |