| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | dmexg 7877 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: fndmexd 7880 unxpwdom2 9541 wemapwe 9650 imadomg 10487 fpwwe2lem11 10594 fpwwe2lem12 10595 hashdmpropge2 14448 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 prdshom 17430 ssclem 17781 subsubc 17815 efgrcl 19645 dprdgrp 19937 dprdf 19938 dprdssv 19948 f1lindf 21731 decpmatval0 22651 pmatcollpw3lem 22670 ordtrest2lem 23090 ordtrest2 23091 mbfmulc2re 25549 mbfneg 25551 dvnf 25829 dvnbss 25830 dchrptlem3 27177 gsummpt2d 32989 gsumfs2d 32995 cycpmco2lem5 33087 cycpmconjslem2 33112 trclubgNEW 43607 omecl 46501 sssmf 46736 mbfresmf 46737 smfpimltxr 46745 smfpimgtxr 46778 smfres 46788 smfco 46800 iinfssc 49046 |
| Copyright terms: Public domain | W3C validator |