![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version |
Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | dmexg 7941 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: fndmexd 7944 unxpwdom2 9657 wemapwe 9766 imadomg 10603 fpwwe2lem11 10710 fpwwe2lem12 10711 hashdmpropge2 14532 prdsplusg 17518 prdsmulr 17519 prdsvsca 17520 prdshom 17527 ssclem 17880 subsubc 17917 efgrcl 19757 dprdgrp 20049 dprdf 20050 dprdssv 20060 f1lindf 21865 decpmatval0 22791 pmatcollpw3lem 22810 ordtrest2lem 23232 ordtrest2 23233 mbfmulc2re 25702 mbfneg 25704 dvnf 25983 dvnbss 25984 dchrptlem3 27328 gsummpt2d 33032 cycpmco2lem5 33123 cycpmconjslem2 33148 trclubgNEW 43580 omecl 46424 sssmf 46659 mbfresmf 46660 smfpimltxr 46668 smfpimgtxr 46701 smfres 46711 smfco 46723 |
Copyright terms: Public domain | W3C validator |