| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | dmexg 7826 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 dom cdm 5611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-cnv 5619 df-dm 5621 df-rn 5622 |
| This theorem is referenced by: fndmexd 7829 unxpwdom2 9469 wemapwe 9582 imadomg 10420 fpwwe2lem11 10527 fpwwe2lem12 10528 hashdmpropge2 14385 prdsplusg 17357 prdsmulr 17358 prdsvsca 17359 prdshom 17366 ssclem 17721 subsubc 17755 efgrcl 19622 dprdgrp 19914 dprdf 19915 dprdssv 19925 f1lindf 21754 decpmatval0 22674 pmatcollpw3lem 22693 ordtrest2lem 23113 ordtrest2 23114 mbfmulc2re 25571 mbfneg 25573 dvnf 25851 dvnbss 25852 dchrptlem3 27199 gsummpt2d 33021 gsumfs2d 33027 cycpmco2lem5 33091 cycpmconjslem2 33116 trclubgNEW 43651 omecl 46541 sssmf 46776 mbfresmf 46777 smfpimltxr 46785 smfpimgtxr 46818 smfres 46828 smfco 46840 iinfssc 49089 |
| Copyright terms: Public domain | W3C validator |