| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | dmexg 7841 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3438 dom cdm 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: fndmexd 7844 unxpwdom2 9499 wemapwe 9612 imadomg 10447 fpwwe2lem11 10554 fpwwe2lem12 10555 hashdmpropge2 14409 prdsplusg 17381 prdsmulr 17382 prdsvsca 17383 prdshom 17390 ssclem 17745 subsubc 17779 efgrcl 19613 dprdgrp 19905 dprdf 19906 dprdssv 19916 f1lindf 21748 decpmatval0 22668 pmatcollpw3lem 22687 ordtrest2lem 23107 ordtrest2 23108 mbfmulc2re 25566 mbfneg 25568 dvnf 25846 dvnbss 25847 dchrptlem3 27194 gsummpt2d 33021 gsumfs2d 33027 cycpmco2lem5 33091 cycpmconjslem2 33116 trclubgNEW 43611 omecl 46504 sssmf 46739 mbfresmf 46740 smfpimltxr 46748 smfpimgtxr 46781 smfres 46791 smfco 46803 iinfssc 49062 |
| Copyright terms: Public domain | W3C validator |