| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | dmexg 7880 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: fndmexd 7883 unxpwdom2 9548 wemapwe 9657 imadomg 10494 fpwwe2lem11 10601 fpwwe2lem12 10602 hashdmpropge2 14455 prdsplusg 17428 prdsmulr 17429 prdsvsca 17430 prdshom 17437 ssclem 17788 subsubc 17822 efgrcl 19652 dprdgrp 19944 dprdf 19945 dprdssv 19955 f1lindf 21738 decpmatval0 22658 pmatcollpw3lem 22677 ordtrest2lem 23097 ordtrest2 23098 mbfmulc2re 25556 mbfneg 25558 dvnf 25836 dvnbss 25837 dchrptlem3 27184 gsummpt2d 32996 gsumfs2d 33002 cycpmco2lem5 33094 cycpmconjslem2 33119 trclubgNEW 43614 omecl 46508 sssmf 46743 mbfresmf 46744 smfpimltxr 46752 smfpimgtxr 46785 smfres 46795 smfco 46807 iinfssc 49050 |
| Copyright terms: Public domain | W3C validator |