| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version | ||
| Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | dmexg 7897 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: fndmexd 7900 unxpwdom2 9602 wemapwe 9711 imadomg 10548 fpwwe2lem11 10655 fpwwe2lem12 10656 hashdmpropge2 14501 prdsplusg 17472 prdsmulr 17473 prdsvsca 17474 prdshom 17481 ssclem 17832 subsubc 17866 efgrcl 19696 dprdgrp 19988 dprdf 19989 dprdssv 19999 f1lindf 21782 decpmatval0 22702 pmatcollpw3lem 22721 ordtrest2lem 23141 ordtrest2 23142 mbfmulc2re 25601 mbfneg 25603 dvnf 25881 dvnbss 25882 dchrptlem3 27229 gsummpt2d 33043 gsumfs2d 33049 cycpmco2lem5 33141 cycpmconjslem2 33166 trclubgNEW 43642 omecl 46532 sssmf 46767 mbfresmf 46768 smfpimltxr 46776 smfpimgtxr 46809 smfres 46819 smfco 46831 iinfssc 49024 |
| Copyright terms: Public domain | W3C validator |