Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmexd | Structured version Visualization version GIF version |
Description: The domain of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
dmexd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
dmexd | ⊢ (𝜑 → dom 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | dmexg 7750 | . 2 ⊢ (𝐴 ∈ 𝑉 → dom 𝐴 ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Vcvv 3432 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-cnv 5597 df-dm 5599 df-rn 5600 |
This theorem is referenced by: fndmexd 7753 unxpwdom2 9347 wemapwe 9455 imadomg 10290 fpwwe2lem11 10397 fpwwe2lem12 10398 hashdmpropge2 14197 prdsplusg 17169 prdsmulr 17170 prdsvsca 17171 prdshom 17178 ssclem 17531 subsubc 17568 efgrcl 19321 dprdgrp 19608 dprdf 19609 dprdssv 19619 f1lindf 21029 decpmatval0 21913 pmatcollpw3lem 21932 ordtrest2lem 22354 ordtrest2 22355 mbfmulc2re 24812 mbfneg 24814 dvnf 25091 dvnbss 25092 dchrptlem3 26414 gsummpt2d 31309 cycpmco2lem5 31397 cycpmconjslem2 31422 trclubgNEW 41226 omecl 44041 sssmf 44274 mbfresmf 44275 smfpimltxr 44283 smfpimgtxr 44315 smfres 44324 smfco 44336 isomgreqve 45277 |
Copyright terms: Public domain | W3C validator |