MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglecl Structured version   Visualization version   GIF version

Theorem psrbaglecl 20681
Description: The set of finite bags is downward-closed. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglecl ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺𝐷)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbaglecl
StepHypRef Expression
1 simp2 1135 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺:𝐼⟶ℕ0)
2 simp1 1134 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹𝐷)
3 id 22 . . . . . . . 8 (𝐹𝐷𝐹𝐷)
4 psrbag.d . . . . . . . . . 10 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
54psrbagf 20673 . . . . . . . . 9 (𝐹𝐷𝐹:𝐼⟶ℕ0)
65ffnd 6500 . . . . . . . 8 (𝐹𝐷𝐹 Fn 𝐼)
73, 6fndmexd 7617 . . . . . . 7 (𝐹𝐷𝐼 ∈ V)
873ad2ant1 1131 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐼 ∈ V)
94psrbag 20672 . . . . . 6 (𝐼 ∈ V → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
108, 9syl 17 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
112, 10mpbid 235 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
1211simprd 500 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 “ ℕ) ∈ Fin)
134psrbaglesupp 20679 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
1412, 13ssfid 8763 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 “ ℕ) ∈ Fin)
154psrbag 20672 . . 3 (𝐼 ∈ V → (𝐺𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (𝐺 “ ℕ) ∈ Fin)))
168, 15syl 17 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (𝐺 “ ℕ) ∈ Fin)))
171, 14, 16mpbir2and 713 1 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  {crab 3075  Vcvv 3410   class class class wbr 5033  ccnv 5524  cima 5528  wf 6332  (class class class)co 7151  r cofr 7405  m cmap 8417  Fincfn 8528  cle 10707  cn 11667  0cn0 11927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-ofr 7407  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-n0 11928
This theorem is referenced by:  psrbaglefi  20687
  Copyright terms: Public domain W3C validator