MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglecl Structured version   Visualization version   GIF version

Theorem psrbaglecl 21870
Description: The set of finite bags is downward-closed. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglecl ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺𝐷)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑓,𝐺
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbaglecl
StepHypRef Expression
1 simp2 1137 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺:𝐼⟶ℕ0)
2 simp1 1136 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹𝐷)
3 id 22 . . . . . . . 8 (𝐹𝐷𝐹𝐷)
4 psrbag.d . . . . . . . . . 10 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
54psrbagf 21865 . . . . . . . . 9 (𝐹𝐷𝐹:𝐼⟶ℕ0)
65ffnd 6660 . . . . . . . 8 (𝐹𝐷𝐹 Fn 𝐼)
73, 6fndmexd 7843 . . . . . . 7 (𝐹𝐷𝐼 ∈ V)
873ad2ant1 1133 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐼 ∈ V)
94psrbag 21864 . . . . . 6 (𝐼 ∈ V → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
108, 9syl 17 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
112, 10mpbid 232 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
1211simprd 495 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 “ ℕ) ∈ Fin)
134psrbaglesupp 21869 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 “ ℕ) ⊆ (𝐹 “ ℕ))
1412, 13ssfid 9164 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺 “ ℕ) ∈ Fin)
154psrbag 21864 . . 3 (𝐼 ∈ V → (𝐺𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (𝐺 “ ℕ) ∈ Fin)))
168, 15syl 17 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (𝐺 “ ℕ) ∈ Fin)))
171, 14, 16mpbir2and 713 1 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437   class class class wbr 5095  ccnv 5620  cima 5624  wf 6485  (class class class)co 7355  r cofr 7618  m cmap 8759  Fincfn 8879  cle 11158  cn 12136  0cn0 12392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393
This theorem is referenced by:  psrbaglefi  21873
  Copyright terms: Public domain W3C validator