Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrbaglecl | Structured version Visualization version GIF version |
Description: The set of finite bags is downward-closed. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
psrbaglecl | ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺:𝐼⟶ℕ0) | |
2 | simp1 1134 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹 ∈ 𝐷) | |
3 | id 22 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷) | |
4 | psrbag.d | . . . . . . . . . 10 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
5 | 4 | psrbagf 20673 | . . . . . . . . 9 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
6 | 5 | ffnd 6500 | . . . . . . . 8 ⊢ (𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼) |
7 | 3, 6 | fndmexd 7617 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐷 → 𝐼 ∈ V) |
8 | 7 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐼 ∈ V) |
9 | 4 | psrbag 20672 | . . . . . 6 ⊢ (𝐼 ∈ V → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
11 | 2, 10 | mpbid 235 | . . . 4 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin)) |
12 | 11 | simprd 500 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡𝐹 “ ℕ) ∈ Fin) |
13 | 4 | psrbaglesupp 20679 | . . 3 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡𝐺 “ ℕ) ⊆ (◡𝐹 “ ℕ)) |
14 | 12, 13 | ssfid 8763 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡𝐺 “ ℕ) ∈ Fin) |
15 | 4 | psrbag 20672 | . . 3 ⊢ (𝐼 ∈ V → (𝐺 ∈ 𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (◡𝐺 “ ℕ) ∈ Fin))) |
16 | 8, 15 | syl 17 | . 2 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐺 ∈ 𝐷 ↔ (𝐺:𝐼⟶ℕ0 ∧ (◡𝐺 “ ℕ) ∈ Fin))) |
17 | 1, 14, 16 | mpbir2and 713 | 1 ⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 {crab 3075 Vcvv 3410 class class class wbr 5033 ◡ccnv 5524 “ cima 5528 ⟶wf 6332 (class class class)co 7151 ∘r cofr 7405 ↑m cmap 8417 Fincfn 8528 ≤ cle 10707 ℕcn 11667 ℕ0cn0 11927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-ofr 7407 df-om 7581 df-1st 7694 df-2nd 7695 df-supp 7837 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-n0 11928 |
This theorem is referenced by: psrbaglefi 20687 |
Copyright terms: Public domain | W3C validator |