MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconf1o Structured version   Visualization version   GIF version

Theorem psrbagconf1o 21836
Description: Bag complementation is a bijection on the set of bags dominated by a given bag 𝐹. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconf1o (𝐹𝐷 → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑓   𝑥,𝑆   𝑥,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑦)

Proof of Theorem psrbagconf1o
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (𝑥𝑆 ↦ (𝐹f𝑥)) = (𝑥𝑆 ↦ (𝐹f𝑥))
2 psrbag.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3 psrbagconf1o.s . . 3 𝑆 = {𝑦𝐷𝑦r𝐹}
42, 3psrbagconcl 21834 . 2 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) ∈ 𝑆)
52, 3psrbagconcl 21834 . 2 ((𝐹𝐷𝑧𝑆) → (𝐹f𝑧) ∈ 𝑆)
62psrbagf 21825 . . . . . . . . 9 (𝐹𝐷𝐹:𝐼⟶ℕ0)
76adantr 480 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐹:𝐼⟶ℕ0)
87ffvelcdmda 7018 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) ∈ ℕ0)
93ssrab3 4033 . . . . . . . . . . . 12 𝑆𝐷
109sseli 3931 . . . . . . . . . . 11 (𝑧𝑆𝑧𝐷)
1110adantl 481 . . . . . . . . . 10 ((𝐹𝐷𝑧𝑆) → 𝑧𝐷)
122psrbagf 21825 . . . . . . . . . 10 (𝑧𝐷𝑧:𝐼⟶ℕ0)
1311, 12syl 17 . . . . . . . . 9 ((𝐹𝐷𝑧𝑆) → 𝑧:𝐼⟶ℕ0)
1413adantrl 716 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑧:𝐼⟶ℕ0)
1514ffvelcdmda 7018 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) ∈ ℕ0)
16 simprl 770 . . . . . . . . . 10 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝑆)
179, 16sselid 3933 . . . . . . . . 9 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝐷)
182psrbagf 21825 . . . . . . . . 9 (𝑥𝐷𝑥:𝐼⟶ℕ0)
1917, 18syl 17 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥:𝐼⟶ℕ0)
2019ffvelcdmda 7018 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
21 nn0cn 12394 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ0 → (𝐹𝑛) ∈ ℂ)
22 nn0cn 12394 . . . . . . . 8 ((𝑧𝑛) ∈ ℕ0 → (𝑧𝑛) ∈ ℂ)
23 nn0cn 12394 . . . . . . . 8 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
24 subsub23 11368 . . . . . . . 8 (((𝐹𝑛) ∈ ℂ ∧ (𝑧𝑛) ∈ ℂ ∧ (𝑥𝑛) ∈ ℂ) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
2521, 22, 23, 24syl3an 1160 . . . . . . 7 (((𝐹𝑛) ∈ ℕ0 ∧ (𝑧𝑛) ∈ ℕ0 ∧ (𝑥𝑛) ∈ ℕ0) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
268, 15, 20, 25syl3anc 1373 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
27 eqcom 2736 . . . . . 6 ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ ((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛))
28 eqcom 2736 . . . . . 6 ((𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛)) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛))
2926, 27, 283bitr4g 314 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
306ffnd 6653 . . . . . . . 8 (𝐹𝐷𝐹 Fn 𝐼)
3130adantr 480 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐹 Fn 𝐼)
3213ffnd 6653 . . . . . . . 8 ((𝐹𝐷𝑧𝑆) → 𝑧 Fn 𝐼)
3332adantrl 716 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑧 Fn 𝐼)
3419ffnd 6653 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥 Fn 𝐼)
3516, 34fndmexd 7837 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐼 ∈ V)
36 inidm 4178 . . . . . . 7 (𝐼𝐼) = 𝐼
37 eqidd 2730 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) = (𝐹𝑛))
38 eqidd 2730 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) = (𝑧𝑛))
3931, 33, 35, 35, 36, 37, 38ofval 7624 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑧)‘𝑛) = ((𝐹𝑛) − (𝑧𝑛)))
4039eqeq2d 2740 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛))))
41 eqidd 2730 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) = (𝑥𝑛))
4231, 34, 35, 35, 36, 37, 41ofval 7624 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑥)‘𝑛) = ((𝐹𝑛) − (𝑥𝑛)))
4342eqeq2d 2740 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑧𝑛) = ((𝐹f𝑥)‘𝑛) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
4429, 40, 433bitr4d 311 . . . 4 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
4544ralbidva 3150 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
465adantrl 716 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝑆)
479, 46sselid 3933 . . . . . 6 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝐷)
482psrbagf 21825 . . . . . 6 ((𝐹f𝑧) ∈ 𝐷 → (𝐹f𝑧):𝐼⟶ℕ0)
4947, 48syl 17 . . . . 5 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧):𝐼⟶ℕ0)
5049ffnd 6653 . . . 4 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) Fn 𝐼)
51 eqfnfv 6965 . . . 4 ((𝑥 Fn 𝐼 ∧ (𝐹f𝑧) Fn 𝐼) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
5234, 50, 51syl2anc 584 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
539, 4sselid 3933 . . . . . . 7 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) ∈ 𝐷)
542psrbagf 21825 . . . . . . 7 ((𝐹f𝑥) ∈ 𝐷 → (𝐹f𝑥):𝐼⟶ℕ0)
5553, 54syl 17 . . . . . 6 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥):𝐼⟶ℕ0)
5655ffnd 6653 . . . . 5 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) Fn 𝐼)
5756adantrr 717 . . . 4 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥) Fn 𝐼)
58 eqfnfv 6965 . . . 4 ((𝑧 Fn 𝐼 ∧ (𝐹f𝑥) Fn 𝐼) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
5933, 57, 58syl2anc 584 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
6045, 52, 593bitr4d 311 . 2 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ 𝑧 = (𝐹f𝑥)))
611, 4, 5, 60f1o2d 7603 1 (𝐹𝐷 → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436   class class class wbr 5092  cmpt 5173  ccnv 5618  cima 5622   Fn wfn 6477  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  f cof 7611  r cofr 7612  m cmap 8753  Fincfn 8872  cc 11007  cle 11150  cmin 11347  cn 12128  0cn0 12384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385
This theorem is referenced by:  psrass1lem  21839  psrcom  21875  psropprmul  22120
  Copyright terms: Public domain W3C validator