MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconf1o Structured version   Visualization version   GIF version

Theorem psrbagconf1o 21338
Description: Bag complementation is a bijection on the set of bags dominated by a given bag 𝐹. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconf1o (𝐹𝐷 → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑓,𝐼,𝑥,𝑦   𝑥,𝑆   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)

Proof of Theorem psrbagconf1o
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . 2 (𝑥𝑆 ↦ (𝐹f𝑥)) = (𝑥𝑆 ↦ (𝐹f𝑥))
2 psrbag.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3 psrbagconf1o.s . . 3 𝑆 = {𝑦𝐷𝑦r𝐹}
42, 3psrbagconcl 21336 . 2 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) ∈ 𝑆)
52, 3psrbagconcl 21336 . 2 ((𝐹𝐷𝑧𝑆) → (𝐹f𝑧) ∈ 𝑆)
62psrbagf 21320 . . . . . . . . 9 (𝐹𝐷𝐹:𝐼⟶ℕ0)
76adantr 481 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐹:𝐼⟶ℕ0)
87ffvelcdmda 7035 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) ∈ ℕ0)
93ssrab3 4040 . . . . . . . . . . . 12 𝑆𝐷
109sseli 3940 . . . . . . . . . . 11 (𝑧𝑆𝑧𝐷)
1110adantl 482 . . . . . . . . . 10 ((𝐹𝐷𝑧𝑆) → 𝑧𝐷)
122psrbagf 21320 . . . . . . . . . 10 (𝑧𝐷𝑧:𝐼⟶ℕ0)
1311, 12syl 17 . . . . . . . . 9 ((𝐹𝐷𝑧𝑆) → 𝑧:𝐼⟶ℕ0)
1413adantrl 714 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑧:𝐼⟶ℕ0)
1514ffvelcdmda 7035 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) ∈ ℕ0)
16 simprl 769 . . . . . . . . . 10 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝑆)
179, 16sselid 3942 . . . . . . . . 9 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝐷)
182psrbagf 21320 . . . . . . . . 9 (𝑥𝐷𝑥:𝐼⟶ℕ0)
1917, 18syl 17 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥:𝐼⟶ℕ0)
2019ffvelcdmda 7035 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
21 nn0cn 12423 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ0 → (𝐹𝑛) ∈ ℂ)
22 nn0cn 12423 . . . . . . . 8 ((𝑧𝑛) ∈ ℕ0 → (𝑧𝑛) ∈ ℂ)
23 nn0cn 12423 . . . . . . . 8 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
24 subsub23 11406 . . . . . . . 8 (((𝐹𝑛) ∈ ℂ ∧ (𝑧𝑛) ∈ ℂ ∧ (𝑥𝑛) ∈ ℂ) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
2521, 22, 23, 24syl3an 1160 . . . . . . 7 (((𝐹𝑛) ∈ ℕ0 ∧ (𝑧𝑛) ∈ ℕ0 ∧ (𝑥𝑛) ∈ ℕ0) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
268, 15, 20, 25syl3anc 1371 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
27 eqcom 2743 . . . . . 6 ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ ((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛))
28 eqcom 2743 . . . . . 6 ((𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛)) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛))
2926, 27, 283bitr4g 313 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
306ffnd 6669 . . . . . . . 8 (𝐹𝐷𝐹 Fn 𝐼)
3130adantr 481 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐹 Fn 𝐼)
3213ffnd 6669 . . . . . . . 8 ((𝐹𝐷𝑧𝑆) → 𝑧 Fn 𝐼)
3332adantrl 714 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑧 Fn 𝐼)
3419ffnd 6669 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥 Fn 𝐼)
3516, 34fndmexd 7843 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐼 ∈ V)
36 inidm 4178 . . . . . . 7 (𝐼𝐼) = 𝐼
37 eqidd 2737 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) = (𝐹𝑛))
38 eqidd 2737 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) = (𝑧𝑛))
3931, 33, 35, 35, 36, 37, 38ofval 7628 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑧)‘𝑛) = ((𝐹𝑛) − (𝑧𝑛)))
4039eqeq2d 2747 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛))))
41 eqidd 2737 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) = (𝑥𝑛))
4231, 34, 35, 35, 36, 37, 41ofval 7628 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑥)‘𝑛) = ((𝐹𝑛) − (𝑥𝑛)))
4342eqeq2d 2747 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑧𝑛) = ((𝐹f𝑥)‘𝑛) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
4429, 40, 433bitr4d 310 . . . 4 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
4544ralbidva 3172 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
465adantrl 714 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝑆)
479, 46sselid 3942 . . . . . 6 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝐷)
482psrbagf 21320 . . . . . 6 ((𝐹f𝑧) ∈ 𝐷 → (𝐹f𝑧):𝐼⟶ℕ0)
4947, 48syl 17 . . . . 5 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧):𝐼⟶ℕ0)
5049ffnd 6669 . . . 4 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) Fn 𝐼)
51 eqfnfv 6982 . . . 4 ((𝑥 Fn 𝐼 ∧ (𝐹f𝑧) Fn 𝐼) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
5234, 50, 51syl2anc 584 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
539, 4sselid 3942 . . . . . . 7 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) ∈ 𝐷)
542psrbagf 21320 . . . . . . 7 ((𝐹f𝑥) ∈ 𝐷 → (𝐹f𝑥):𝐼⟶ℕ0)
5553, 54syl 17 . . . . . 6 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥):𝐼⟶ℕ0)
5655ffnd 6669 . . . . 5 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) Fn 𝐼)
5756adantrr 715 . . . 4 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥) Fn 𝐼)
58 eqfnfv 6982 . . . 4 ((𝑧 Fn 𝐼 ∧ (𝐹f𝑥) Fn 𝐼) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
5933, 57, 58syl2anc 584 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
6045, 52, 593bitr4d 310 . 2 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ 𝑧 = (𝐹f𝑥)))
611, 4, 5, 60f1o2d 7607 1 (𝐹𝐷 → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445   class class class wbr 5105  cmpt 5188  ccnv 5632  cima 5636   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  f cof 7615  r cofr 7616  m cmap 8765  Fincfn 8883  cc 11049  cle 11190  cmin 11385  cn 12153  0cn0 12413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414
This theorem is referenced by:  psrass1lem  21345  psrcom  21378  psropprmul  21609
  Copyright terms: Public domain W3C validator