Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢ (𝑥 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑥)) = (𝑥 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑥)) |
2 | | psrbag.d |
. . 3
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
3 | | psrbagconf1o.s |
. . 3
⊢ 𝑆 = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹} |
4 | 2, 3 | psrbagconcl 21047 |
. 2
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑥 ∈ 𝑆) → (𝐹 ∘f − 𝑥) ∈ 𝑆) |
5 | 2, 3 | psrbagconcl 21047 |
. 2
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑧 ∈ 𝑆) → (𝐹 ∘f − 𝑧) ∈ 𝑆) |
6 | 2 | psrbagf 21031 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
7 | 6 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝐹:𝐼⟶ℕ0) |
8 | 7 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝐹‘𝑛) ∈
ℕ0) |
9 | 3 | ssrab3 4011 |
. . . . . . . . . . . 12
⊢ 𝑆 ⊆ 𝐷 |
10 | 9 | sseli 3913 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ 𝐷) |
11 | 10 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝐷) |
12 | 2 | psrbagf 21031 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐷 → 𝑧:𝐼⟶ℕ0) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑧 ∈ 𝑆) → 𝑧:𝐼⟶ℕ0) |
14 | 13 | adantrl 712 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧:𝐼⟶ℕ0) |
15 | 14 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝑧‘𝑛) ∈
ℕ0) |
16 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
17 | 9, 16 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥 ∈ 𝐷) |
18 | 2 | psrbagf 21031 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → 𝑥:𝐼⟶ℕ0) |
19 | 17, 18 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥:𝐼⟶ℕ0) |
20 | 19 | ffvelrnda 6943 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝑥‘𝑛) ∈
ℕ0) |
21 | | nn0cn 12173 |
. . . . . . . 8
⊢ ((𝐹‘𝑛) ∈ ℕ0 → (𝐹‘𝑛) ∈ ℂ) |
22 | | nn0cn 12173 |
. . . . . . . 8
⊢ ((𝑧‘𝑛) ∈ ℕ0 → (𝑧‘𝑛) ∈ ℂ) |
23 | | nn0cn 12173 |
. . . . . . . 8
⊢ ((𝑥‘𝑛) ∈ ℕ0 → (𝑥‘𝑛) ∈ ℂ) |
24 | | subsub23 11156 |
. . . . . . . 8
⊢ (((𝐹‘𝑛) ∈ ℂ ∧ (𝑧‘𝑛) ∈ ℂ ∧ (𝑥‘𝑛) ∈ ℂ) → (((𝐹‘𝑛) − (𝑧‘𝑛)) = (𝑥‘𝑛) ↔ ((𝐹‘𝑛) − (𝑥‘𝑛)) = (𝑧‘𝑛))) |
25 | 21, 22, 23, 24 | syl3an 1158 |
. . . . . . 7
⊢ (((𝐹‘𝑛) ∈ ℕ0 ∧ (𝑧‘𝑛) ∈ ℕ0 ∧ (𝑥‘𝑛) ∈ ℕ0) → (((𝐹‘𝑛) − (𝑧‘𝑛)) = (𝑥‘𝑛) ↔ ((𝐹‘𝑛) − (𝑥‘𝑛)) = (𝑧‘𝑛))) |
26 | 8, 15, 20, 25 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (((𝐹‘𝑛) − (𝑧‘𝑛)) = (𝑥‘𝑛) ↔ ((𝐹‘𝑛) − (𝑥‘𝑛)) = (𝑧‘𝑛))) |
27 | | eqcom 2745 |
. . . . . 6
⊢ ((𝑥‘𝑛) = ((𝐹‘𝑛) − (𝑧‘𝑛)) ↔ ((𝐹‘𝑛) − (𝑧‘𝑛)) = (𝑥‘𝑛)) |
28 | | eqcom 2745 |
. . . . . 6
⊢ ((𝑧‘𝑛) = ((𝐹‘𝑛) − (𝑥‘𝑛)) ↔ ((𝐹‘𝑛) − (𝑥‘𝑛)) = (𝑧‘𝑛)) |
29 | 26, 27, 28 | 3bitr4g 313 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝑥‘𝑛) = ((𝐹‘𝑛) − (𝑧‘𝑛)) ↔ (𝑧‘𝑛) = ((𝐹‘𝑛) − (𝑥‘𝑛)))) |
30 | 6 | ffnd 6585 |
. . . . . . . 8
⊢ (𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼) |
31 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝐹 Fn 𝐼) |
32 | 13 | ffnd 6585 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑧 ∈ 𝑆) → 𝑧 Fn 𝐼) |
33 | 32 | adantrl 712 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑧 Fn 𝐼) |
34 | 19 | ffnd 6585 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝑥 Fn 𝐼) |
35 | 16, 34 | fndmexd 7727 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → 𝐼 ∈ V) |
36 | | inidm 4149 |
. . . . . . 7
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
37 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝐹‘𝑛) = (𝐹‘𝑛)) |
38 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝑧‘𝑛) = (𝑧‘𝑛)) |
39 | 31, 33, 35, 35, 36, 37, 38 | ofval 7522 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝐹 ∘f − 𝑧)‘𝑛) = ((𝐹‘𝑛) − (𝑧‘𝑛))) |
40 | 39 | eqeq2d 2749 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝑥‘𝑛) = ((𝐹 ∘f − 𝑧)‘𝑛) ↔ (𝑥‘𝑛) = ((𝐹‘𝑛) − (𝑧‘𝑛)))) |
41 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → (𝑥‘𝑛) = (𝑥‘𝑛)) |
42 | 31, 34, 35, 35, 36, 37, 41 | ofval 7522 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝐹 ∘f − 𝑥)‘𝑛) = ((𝐹‘𝑛) − (𝑥‘𝑛))) |
43 | 42 | eqeq2d 2749 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝑧‘𝑛) = ((𝐹 ∘f − 𝑥)‘𝑛) ↔ (𝑧‘𝑛) = ((𝐹‘𝑛) − (𝑥‘𝑛)))) |
44 | 29, 40, 43 | 3bitr4d 310 |
. . . 4
⊢ (((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) ∧ 𝑛 ∈ 𝐼) → ((𝑥‘𝑛) = ((𝐹 ∘f − 𝑧)‘𝑛) ↔ (𝑧‘𝑛) = ((𝐹 ∘f − 𝑥)‘𝑛))) |
45 | 44 | ralbidva 3119 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (∀𝑛 ∈ 𝐼 (𝑥‘𝑛) = ((𝐹 ∘f − 𝑧)‘𝑛) ↔ ∀𝑛 ∈ 𝐼 (𝑧‘𝑛) = ((𝐹 ∘f − 𝑥)‘𝑛))) |
46 | 5 | adantrl 712 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑧) ∈ 𝑆) |
47 | 9, 46 | sselid 3915 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑧) ∈ 𝐷) |
48 | 2 | psrbagf 21031 |
. . . . . 6
⊢ ((𝐹 ∘f −
𝑧) ∈ 𝐷 → (𝐹 ∘f − 𝑧):𝐼⟶ℕ0) |
49 | 47, 48 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑧):𝐼⟶ℕ0) |
50 | 49 | ffnd 6585 |
. . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑧) Fn 𝐼) |
51 | | eqfnfv 6891 |
. . . 4
⊢ ((𝑥 Fn 𝐼 ∧ (𝐹 ∘f − 𝑧) Fn 𝐼) → (𝑥 = (𝐹 ∘f − 𝑧) ↔ ∀𝑛 ∈ 𝐼 (𝑥‘𝑛) = ((𝐹 ∘f − 𝑧)‘𝑛))) |
52 | 34, 50, 51 | syl2anc 583 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥 = (𝐹 ∘f − 𝑧) ↔ ∀𝑛 ∈ 𝐼 (𝑥‘𝑛) = ((𝐹 ∘f − 𝑧)‘𝑛))) |
53 | 9, 4 | sselid 3915 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑥 ∈ 𝑆) → (𝐹 ∘f − 𝑥) ∈ 𝐷) |
54 | 2 | psrbagf 21031 |
. . . . . . 7
⊢ ((𝐹 ∘f −
𝑥) ∈ 𝐷 → (𝐹 ∘f − 𝑥):𝐼⟶ℕ0) |
55 | 53, 54 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑥 ∈ 𝑆) → (𝐹 ∘f − 𝑥):𝐼⟶ℕ0) |
56 | 55 | ffnd 6585 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝑥 ∈ 𝑆) → (𝐹 ∘f − 𝑥) Fn 𝐼) |
57 | 56 | adantrr 713 |
. . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝐹 ∘f − 𝑥) Fn 𝐼) |
58 | | eqfnfv 6891 |
. . . 4
⊢ ((𝑧 Fn 𝐼 ∧ (𝐹 ∘f − 𝑥) Fn 𝐼) → (𝑧 = (𝐹 ∘f − 𝑥) ↔ ∀𝑛 ∈ 𝐼 (𝑧‘𝑛) = ((𝐹 ∘f − 𝑥)‘𝑛))) |
59 | 33, 57, 58 | syl2anc 583 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑧 = (𝐹 ∘f − 𝑥) ↔ ∀𝑛 ∈ 𝐼 (𝑧‘𝑛) = ((𝐹 ∘f − 𝑥)‘𝑛))) |
60 | 45, 52, 59 | 3bitr4d 310 |
. 2
⊢ ((𝐹 ∈ 𝐷 ∧ (𝑥 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥 = (𝐹 ∘f − 𝑧) ↔ 𝑧 = (𝐹 ∘f − 𝑥))) |
61 | 1, 4, 5, 60 | f1o2d 7501 |
1
⊢ (𝐹 ∈ 𝐷 → (𝑥 ∈ 𝑆 ↦ (𝐹 ∘f − 𝑥)):𝑆–1-1-onto→𝑆) |