MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconf1o Structured version   Visualization version   GIF version

Theorem psrbagconf1o 21471
Description: Bag complementation is a bijection on the set of bags dominated by a given bag 𝐹. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconf1o (𝐹𝐷 → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐹   𝑓,𝐼,𝑥,𝑦   𝑥,𝑆   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)

Proof of Theorem psrbagconf1o
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (𝑥𝑆 ↦ (𝐹f𝑥)) = (𝑥𝑆 ↦ (𝐹f𝑥))
2 psrbag.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3 psrbagconf1o.s . . 3 𝑆 = {𝑦𝐷𝑦r𝐹}
42, 3psrbagconcl 21469 . 2 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) ∈ 𝑆)
52, 3psrbagconcl 21469 . 2 ((𝐹𝐷𝑧𝑆) → (𝐹f𝑧) ∈ 𝑆)
62psrbagf 21453 . . . . . . . . 9 (𝐹𝐷𝐹:𝐼⟶ℕ0)
76adantr 482 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐹:𝐼⟶ℕ0)
87ffvelcdmda 7082 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) ∈ ℕ0)
93ssrab3 4079 . . . . . . . . . . . 12 𝑆𝐷
109sseli 3977 . . . . . . . . . . 11 (𝑧𝑆𝑧𝐷)
1110adantl 483 . . . . . . . . . 10 ((𝐹𝐷𝑧𝑆) → 𝑧𝐷)
122psrbagf 21453 . . . . . . . . . 10 (𝑧𝐷𝑧:𝐼⟶ℕ0)
1311, 12syl 17 . . . . . . . . 9 ((𝐹𝐷𝑧𝑆) → 𝑧:𝐼⟶ℕ0)
1413adantrl 715 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑧:𝐼⟶ℕ0)
1514ffvelcdmda 7082 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) ∈ ℕ0)
16 simprl 770 . . . . . . . . . 10 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝑆)
179, 16sselid 3979 . . . . . . . . 9 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝐷)
182psrbagf 21453 . . . . . . . . 9 (𝑥𝐷𝑥:𝐼⟶ℕ0)
1917, 18syl 17 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥:𝐼⟶ℕ0)
2019ffvelcdmda 7082 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
21 nn0cn 12478 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ0 → (𝐹𝑛) ∈ ℂ)
22 nn0cn 12478 . . . . . . . 8 ((𝑧𝑛) ∈ ℕ0 → (𝑧𝑛) ∈ ℂ)
23 nn0cn 12478 . . . . . . . 8 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
24 subsub23 11461 . . . . . . . 8 (((𝐹𝑛) ∈ ℂ ∧ (𝑧𝑛) ∈ ℂ ∧ (𝑥𝑛) ∈ ℂ) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
2521, 22, 23, 24syl3an 1161 . . . . . . 7 (((𝐹𝑛) ∈ ℕ0 ∧ (𝑧𝑛) ∈ ℕ0 ∧ (𝑥𝑛) ∈ ℕ0) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
268, 15, 20, 25syl3anc 1372 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
27 eqcom 2740 . . . . . 6 ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ ((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛))
28 eqcom 2740 . . . . . 6 ((𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛)) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛))
2926, 27, 283bitr4g 314 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
306ffnd 6715 . . . . . . . 8 (𝐹𝐷𝐹 Fn 𝐼)
3130adantr 482 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐹 Fn 𝐼)
3213ffnd 6715 . . . . . . . 8 ((𝐹𝐷𝑧𝑆) → 𝑧 Fn 𝐼)
3332adantrl 715 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑧 Fn 𝐼)
3419ffnd 6715 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥 Fn 𝐼)
3516, 34fndmexd 7892 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐼 ∈ V)
36 inidm 4217 . . . . . . 7 (𝐼𝐼) = 𝐼
37 eqidd 2734 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) = (𝐹𝑛))
38 eqidd 2734 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) = (𝑧𝑛))
3931, 33, 35, 35, 36, 37, 38ofval 7676 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑧)‘𝑛) = ((𝐹𝑛) − (𝑧𝑛)))
4039eqeq2d 2744 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛))))
41 eqidd 2734 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) = (𝑥𝑛))
4231, 34, 35, 35, 36, 37, 41ofval 7676 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑥)‘𝑛) = ((𝐹𝑛) − (𝑥𝑛)))
4342eqeq2d 2744 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑧𝑛) = ((𝐹f𝑥)‘𝑛) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
4429, 40, 433bitr4d 311 . . . 4 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
4544ralbidva 3176 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
465adantrl 715 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝑆)
479, 46sselid 3979 . . . . . 6 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝐷)
482psrbagf 21453 . . . . . 6 ((𝐹f𝑧) ∈ 𝐷 → (𝐹f𝑧):𝐼⟶ℕ0)
4947, 48syl 17 . . . . 5 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧):𝐼⟶ℕ0)
5049ffnd 6715 . . . 4 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) Fn 𝐼)
51 eqfnfv 7028 . . . 4 ((𝑥 Fn 𝐼 ∧ (𝐹f𝑧) Fn 𝐼) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
5234, 50, 51syl2anc 585 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
539, 4sselid 3979 . . . . . . 7 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) ∈ 𝐷)
542psrbagf 21453 . . . . . . 7 ((𝐹f𝑥) ∈ 𝐷 → (𝐹f𝑥):𝐼⟶ℕ0)
5553, 54syl 17 . . . . . 6 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥):𝐼⟶ℕ0)
5655ffnd 6715 . . . . 5 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) Fn 𝐼)
5756adantrr 716 . . . 4 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥) Fn 𝐼)
58 eqfnfv 7028 . . . 4 ((𝑧 Fn 𝐼 ∧ (𝐹f𝑥) Fn 𝐼) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
5933, 57, 58syl2anc 585 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
6045, 52, 593bitr4d 311 . 2 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ 𝑧 = (𝐹f𝑥)))
611, 4, 5, 60f1o2d 7655 1 (𝐹𝐷 → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  {crab 3433  Vcvv 3475   class class class wbr 5147  cmpt 5230  ccnv 5674  cima 5678   Fn wfn 6535  wf 6536  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7404  f cof 7663  r cofr 7664  m cmap 8816  Fincfn 8935  cc 11104  cle 11245  cmin 11440  cn 12208  0cn0 12468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-of 7665  df-ofr 7666  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469
This theorem is referenced by:  psrass1lem  21478  psrcom  21511  psropprmul  21742
  Copyright terms: Public domain W3C validator