MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconf1o Structured version   Visualization version   GIF version

Theorem psrbagconf1o 21972
Description: Bag complementation is a bijection on the set of bags dominated by a given bag 𝐹. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconf1o (𝐹𝐷 → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑓   𝑥,𝑆   𝑥,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑦)

Proof of Theorem psrbagconf1o
Dummy variables 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (𝑥𝑆 ↦ (𝐹f𝑥)) = (𝑥𝑆 ↦ (𝐹f𝑥))
2 psrbag.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3 psrbagconf1o.s . . 3 𝑆 = {𝑦𝐷𝑦r𝐹}
42, 3psrbagconcl 21970 . 2 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) ∈ 𝑆)
52, 3psrbagconcl 21970 . 2 ((𝐹𝐷𝑧𝑆) → (𝐹f𝑧) ∈ 𝑆)
62psrbagf 21961 . . . . . . . . 9 (𝐹𝐷𝐹:𝐼⟶ℕ0)
76adantr 480 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐹:𝐼⟶ℕ0)
87ffvelcdmda 7118 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) ∈ ℕ0)
93ssrab3 4105 . . . . . . . . . . . 12 𝑆𝐷
109sseli 4004 . . . . . . . . . . 11 (𝑧𝑆𝑧𝐷)
1110adantl 481 . . . . . . . . . 10 ((𝐹𝐷𝑧𝑆) → 𝑧𝐷)
122psrbagf 21961 . . . . . . . . . 10 (𝑧𝐷𝑧:𝐼⟶ℕ0)
1311, 12syl 17 . . . . . . . . 9 ((𝐹𝐷𝑧𝑆) → 𝑧:𝐼⟶ℕ0)
1413adantrl 715 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑧:𝐼⟶ℕ0)
1514ffvelcdmda 7118 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) ∈ ℕ0)
16 simprl 770 . . . . . . . . . 10 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝑆)
179, 16sselid 4006 . . . . . . . . 9 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥𝐷)
182psrbagf 21961 . . . . . . . . 9 (𝑥𝐷𝑥:𝐼⟶ℕ0)
1917, 18syl 17 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥:𝐼⟶ℕ0)
2019ffvelcdmda 7118 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
21 nn0cn 12563 . . . . . . . 8 ((𝐹𝑛) ∈ ℕ0 → (𝐹𝑛) ∈ ℂ)
22 nn0cn 12563 . . . . . . . 8 ((𝑧𝑛) ∈ ℕ0 → (𝑧𝑛) ∈ ℂ)
23 nn0cn 12563 . . . . . . . 8 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
24 subsub23 11541 . . . . . . . 8 (((𝐹𝑛) ∈ ℂ ∧ (𝑧𝑛) ∈ ℂ ∧ (𝑥𝑛) ∈ ℂ) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
2521, 22, 23, 24syl3an 1160 . . . . . . 7 (((𝐹𝑛) ∈ ℕ0 ∧ (𝑧𝑛) ∈ ℕ0 ∧ (𝑥𝑛) ∈ ℕ0) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
268, 15, 20, 25syl3anc 1371 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛)))
27 eqcom 2747 . . . . . 6 ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ ((𝐹𝑛) − (𝑧𝑛)) = (𝑥𝑛))
28 eqcom 2747 . . . . . 6 ((𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛)) ↔ ((𝐹𝑛) − (𝑥𝑛)) = (𝑧𝑛))
2926, 27, 283bitr4g 314 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛)) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
306ffnd 6748 . . . . . . . 8 (𝐹𝐷𝐹 Fn 𝐼)
3130adantr 480 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐹 Fn 𝐼)
3213ffnd 6748 . . . . . . . 8 ((𝐹𝐷𝑧𝑆) → 𝑧 Fn 𝐼)
3332adantrl 715 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑧 Fn 𝐼)
3419ffnd 6748 . . . . . . . 8 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝑥 Fn 𝐼)
3516, 34fndmexd 7944 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → 𝐼 ∈ V)
36 inidm 4248 . . . . . . 7 (𝐼𝐼) = 𝐼
37 eqidd 2741 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝐹𝑛) = (𝐹𝑛))
38 eqidd 2741 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑧𝑛) = (𝑧𝑛))
3931, 33, 35, 35, 36, 37, 38ofval 7725 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑧)‘𝑛) = ((𝐹𝑛) − (𝑧𝑛)))
4039eqeq2d 2751 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑥𝑛) = ((𝐹𝑛) − (𝑧𝑛))))
41 eqidd 2741 . . . . . . 7 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → (𝑥𝑛) = (𝑥𝑛))
4231, 34, 35, 35, 36, 37, 41ofval 7725 . . . . . 6 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝐹f𝑥)‘𝑛) = ((𝐹𝑛) − (𝑥𝑛)))
4342eqeq2d 2751 . . . . 5 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑧𝑛) = ((𝐹f𝑥)‘𝑛) ↔ (𝑧𝑛) = ((𝐹𝑛) − (𝑥𝑛))))
4429, 40, 433bitr4d 311 . . . 4 (((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) ∧ 𝑛𝐼) → ((𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
4544ralbidva 3182 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
465adantrl 715 . . . . . . 7 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝑆)
479, 46sselid 4006 . . . . . 6 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) ∈ 𝐷)
482psrbagf 21961 . . . . . 6 ((𝐹f𝑧) ∈ 𝐷 → (𝐹f𝑧):𝐼⟶ℕ0)
4947, 48syl 17 . . . . 5 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧):𝐼⟶ℕ0)
5049ffnd 6748 . . . 4 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑧) Fn 𝐼)
51 eqfnfv 7064 . . . 4 ((𝑥 Fn 𝐼 ∧ (𝐹f𝑧) Fn 𝐼) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
5234, 50, 51syl2anc 583 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ ∀𝑛𝐼 (𝑥𝑛) = ((𝐹f𝑧)‘𝑛)))
539, 4sselid 4006 . . . . . . 7 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) ∈ 𝐷)
542psrbagf 21961 . . . . . . 7 ((𝐹f𝑥) ∈ 𝐷 → (𝐹f𝑥):𝐼⟶ℕ0)
5553, 54syl 17 . . . . . 6 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥):𝐼⟶ℕ0)
5655ffnd 6748 . . . . 5 ((𝐹𝐷𝑥𝑆) → (𝐹f𝑥) Fn 𝐼)
5756adantrr 716 . . . 4 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝐹f𝑥) Fn 𝐼)
58 eqfnfv 7064 . . . 4 ((𝑧 Fn 𝐼 ∧ (𝐹f𝑥) Fn 𝐼) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
5933, 57, 58syl2anc 583 . . 3 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑧 = (𝐹f𝑥) ↔ ∀𝑛𝐼 (𝑧𝑛) = ((𝐹f𝑥)‘𝑛)))
6045, 52, 593bitr4d 311 . 2 ((𝐹𝐷 ∧ (𝑥𝑆𝑧𝑆)) → (𝑥 = (𝐹f𝑧) ↔ 𝑧 = (𝐹f𝑥)))
611, 4, 5, 60f1o2d 7704 1 (𝐹𝐷 → (𝑥𝑆 ↦ (𝐹f𝑥)):𝑆1-1-onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488   class class class wbr 5166  cmpt 5249  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  f cof 7712  r cofr 7713  m cmap 8884  Fincfn 9003  cc 11182  cle 11325  cmin 11520  cn 12293  0cn0 12553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554
This theorem is referenced by:  psrass1lem  21975  psrcom  22011  psropprmul  22260
  Copyright terms: Public domain W3C validator