MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagcon Structured version   Visualization version   GIF version

Theorem psrbagcon 21231
Description: The analogue of the statement "0 ≤ 𝐺𝐹 implies 0 ≤ 𝐹𝐺𝐹 " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagcon ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∈ 𝐷 ∧ (𝐹f𝐺) ∘r𝐹))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagcon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
21psrbagf 21219 . . . . . . 7 (𝐹𝐷𝐹:𝐼⟶ℕ0)
32ffnd 6646 . . . . . 6 (𝐹𝐷𝐹 Fn 𝐼)
433ad2ant1 1132 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹 Fn 𝐼)
5 simp2 1136 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺:𝐼⟶ℕ0)
65ffnd 6646 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺 Fn 𝐼)
7 id 22 . . . . . . 7 (𝐹𝐷𝐹𝐷)
87, 3fndmexd 7813 . . . . . 6 (𝐹𝐷𝐼 ∈ V)
983ad2ant1 1132 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐼 ∈ V)
10 inidm 4164 . . . . 5 (𝐼𝐼) = 𝐼
114, 6, 9, 9, 10offn 7600 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺) Fn 𝐼)
12 eqidd 2737 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
13 eqidd 2737 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
144, 6, 9, 9, 10, 12, 13ofval 7598 . . . . . 6 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
15 simp3 1137 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺r𝐹)
166, 4, 9, 9, 10, 13, 12ofrfval 7597 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺r𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
1715, 16mpbid 231 . . . . . . . 8 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
1817r19.21bi 3230 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
195ffvelcdmda 7011 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
2023ad2ant1 1132 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹:𝐼⟶ℕ0)
2120ffvelcdmda 7011 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
22 nn0sub 12376 . . . . . . . 8 (((𝐺𝑥) ∈ ℕ0 ∧ (𝐹𝑥) ∈ ℕ0) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2319, 21, 22syl2anc 584 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2418, 23mpbid 231 . . . . . 6 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0)
2514, 24eqeltrd 2837 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹f𝐺)‘𝑥) ∈ ℕ0)
2625ralrimiva 3139 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 ((𝐹f𝐺)‘𝑥) ∈ ℕ0)
27 ffnfv 7042 . . . 4 ((𝐹f𝐺):𝐼⟶ℕ0 ↔ ((𝐹f𝐺) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐹f𝐺)‘𝑥) ∈ ℕ0))
2811, 26, 27sylanbrc 583 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺):𝐼⟶ℕ0)
29 simp1 1135 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹𝐷)
301psrbag 21218 . . . . . . 7 (𝐼 ∈ V → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
319, 30syl 17 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
3229, 31mpbid 231 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
3332simprd 496 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 “ ℕ) ∈ Fin)
3419nn0ge0d 12389 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → 0 ≤ (𝐺𝑥))
3521nn0red 12387 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
3619nn0red 12387 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
3735, 36subge02d 11660 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3834, 37mpbid 231 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
3938ralrimiva 3139 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
4011, 4, 9, 9, 10, 14, 12ofrfval 7597 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∘r𝐹 ↔ ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
4139, 40mpbird 256 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺) ∘r𝐹)
421psrbaglesupp 21225 . . . . 5 ((𝐹𝐷 ∧ (𝐹f𝐺):𝐼⟶ℕ0 ∧ (𝐹f𝐺) ∘r𝐹) → ((𝐹f𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4329, 28, 41, 42syl3anc 1370 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4433, 43ssfid 9124 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) “ ℕ) ∈ Fin)
451psrbag 21218 . . . 4 (𝐼 ∈ V → ((𝐹f𝐺) ∈ 𝐷 ↔ ((𝐹f𝐺):𝐼⟶ℕ0 ∧ ((𝐹f𝐺) “ ℕ) ∈ Fin)))
469, 45syl 17 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∈ 𝐷 ↔ ((𝐹f𝐺):𝐼⟶ℕ0 ∧ ((𝐹f𝐺) “ ℕ) ∈ Fin)))
4728, 44, 46mpbir2and 710 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺) ∈ 𝐷)
4847, 41jca 512 1 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∈ 𝐷 ∧ (𝐹f𝐺) ∘r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  {crab 3403  Vcvv 3441  wss 3897   class class class wbr 5089  ccnv 5613  cima 5617   Fn wfn 6468  wf 6469  cfv 6473  (class class class)co 7329  f cof 7585  r cofr 7586  m cmap 8678  Fincfn 8796  0cc0 10964  cle 11103  cmin 11298  cn 12066  0cn0 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-ofr 7588  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-n0 12327
This theorem is referenced by:  psrbagconcl  21235  gsumbagdiaglem  21242  psrmulcllem  21254  psrlidm  21270  psrridm  21271  psrass1  21272  psrcom  21276
  Copyright terms: Public domain W3C validator