MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagcon Structured version   Visualization version   GIF version

Theorem psrbagcon 21043
Description: The analogue of the statement "0 ≤ 𝐺𝐹 implies 0 ≤ 𝐹𝐺𝐹 " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagcon ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∈ 𝐷 ∧ (𝐹f𝐺) ∘r𝐹))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagcon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
21psrbagf 21031 . . . . . . 7 (𝐹𝐷𝐹:𝐼⟶ℕ0)
32ffnd 6585 . . . . . 6 (𝐹𝐷𝐹 Fn 𝐼)
433ad2ant1 1131 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹 Fn 𝐼)
5 simp2 1135 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺:𝐼⟶ℕ0)
65ffnd 6585 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺 Fn 𝐼)
7 id 22 . . . . . . 7 (𝐹𝐷𝐹𝐷)
87, 3fndmexd 7727 . . . . . 6 (𝐹𝐷𝐼 ∈ V)
983ad2ant1 1131 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐼 ∈ V)
10 inidm 4149 . . . . 5 (𝐼𝐼) = 𝐼
114, 6, 9, 9, 10offn 7524 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺) Fn 𝐼)
12 eqidd 2739 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
13 eqidd 2739 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
144, 6, 9, 9, 10, 12, 13ofval 7522 . . . . . 6 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
15 simp3 1136 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺r𝐹)
166, 4, 9, 9, 10, 13, 12ofrfval 7521 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺r𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
1715, 16mpbid 231 . . . . . . . 8 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
1817r19.21bi 3132 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
195ffvelrnda 6943 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
2023ad2ant1 1131 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹:𝐼⟶ℕ0)
2120ffvelrnda 6943 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
22 nn0sub 12213 . . . . . . . 8 (((𝐺𝑥) ∈ ℕ0 ∧ (𝐹𝑥) ∈ ℕ0) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2319, 21, 22syl2anc 583 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2418, 23mpbid 231 . . . . . 6 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0)
2514, 24eqeltrd 2839 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹f𝐺)‘𝑥) ∈ ℕ0)
2625ralrimiva 3107 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 ((𝐹f𝐺)‘𝑥) ∈ ℕ0)
27 ffnfv 6974 . . . 4 ((𝐹f𝐺):𝐼⟶ℕ0 ↔ ((𝐹f𝐺) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐹f𝐺)‘𝑥) ∈ ℕ0))
2811, 26, 27sylanbrc 582 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺):𝐼⟶ℕ0)
29 simp1 1134 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹𝐷)
301psrbag 21030 . . . . . . 7 (𝐼 ∈ V → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
319, 30syl 17 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
3229, 31mpbid 231 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
3332simprd 495 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 “ ℕ) ∈ Fin)
3419nn0ge0d 12226 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → 0 ≤ (𝐺𝑥))
3521nn0red 12224 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
3619nn0red 12224 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
3735, 36subge02d 11497 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3834, 37mpbid 231 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
3938ralrimiva 3107 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
4011, 4, 9, 9, 10, 14, 12ofrfval 7521 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∘r𝐹 ↔ ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
4139, 40mpbird 256 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺) ∘r𝐹)
421psrbaglesupp 21037 . . . . 5 ((𝐹𝐷 ∧ (𝐹f𝐺):𝐼⟶ℕ0 ∧ (𝐹f𝐺) ∘r𝐹) → ((𝐹f𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4329, 28, 41, 42syl3anc 1369 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4433, 43ssfid 8971 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) “ ℕ) ∈ Fin)
451psrbag 21030 . . . 4 (𝐼 ∈ V → ((𝐹f𝐺) ∈ 𝐷 ↔ ((𝐹f𝐺):𝐼⟶ℕ0 ∧ ((𝐹f𝐺) “ ℕ) ∈ Fin)))
469, 45syl 17 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∈ 𝐷 ↔ ((𝐹f𝐺):𝐼⟶ℕ0 ∧ ((𝐹f𝐺) “ ℕ) ∈ Fin)))
4728, 44, 46mpbir2and 709 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺) ∈ 𝐷)
4847, 41jca 511 1 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∈ 𝐷 ∧ (𝐹f𝐺) ∘r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883   class class class wbr 5070  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  r cofr 7510  m cmap 8573  Fincfn 8691  0cc0 10802  cle 10941  cmin 11135  cn 11903  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164
This theorem is referenced by:  psrbagconcl  21047  gsumbagdiaglem  21054  psrmulcllem  21066  psrlidm  21082  psrridm  21083  psrass1  21084  psrcom  21088
  Copyright terms: Public domain W3C validator