MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagcon Structured version   Visualization version   GIF version

Theorem psrbagcon 21841
Description: The analogue of the statement "0 ≤ 𝐺𝐹 implies 0 ≤ 𝐹𝐺𝐹 " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 5-Aug-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagcon ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∈ 𝐷 ∧ (𝐹f𝐺) ∘r𝐹))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑓,𝐺
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagcon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psrbag.d . . . . . . . 8 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
21psrbagf 21834 . . . . . . 7 (𝐹𝐷𝐹:𝐼⟶ℕ0)
32ffnd 6692 . . . . . 6 (𝐹𝐷𝐹 Fn 𝐼)
433ad2ant1 1133 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹 Fn 𝐼)
5 simp2 1137 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺:𝐼⟶ℕ0)
65ffnd 6692 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺 Fn 𝐼)
7 id 22 . . . . . . 7 (𝐹𝐷𝐹𝐷)
87, 3fndmexd 7883 . . . . . 6 (𝐹𝐷𝐼 ∈ V)
983ad2ant1 1133 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐼 ∈ V)
10 inidm 4193 . . . . 5 (𝐼𝐼) = 𝐼
114, 6, 9, 9, 10offn 7669 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺) Fn 𝐼)
12 eqidd 2731 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
13 eqidd 2731 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
144, 6, 9, 9, 10, 12, 13ofval 7667 . . . . . 6 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹f𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
15 simp3 1138 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐺r𝐹)
166, 4, 9, 9, 10, 13, 12ofrfval 7666 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐺r𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
1715, 16mpbid 232 . . . . . . . 8 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
1817r19.21bi 3230 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
195ffvelcdmda 7059 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
2023ad2ant1 1133 . . . . . . . . 9 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹:𝐼⟶ℕ0)
2120ffvelcdmda 7059 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
22 nn0sub 12499 . . . . . . . 8 (((𝐺𝑥) ∈ ℕ0 ∧ (𝐹𝑥) ∈ ℕ0) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2319, 21, 22syl2anc 584 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2418, 23mpbid 232 . . . . . 6 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0)
2514, 24eqeltrd 2829 . . . . 5 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹f𝐺)‘𝑥) ∈ ℕ0)
2625ralrimiva 3126 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 ((𝐹f𝐺)‘𝑥) ∈ ℕ0)
27 ffnfv 7094 . . . 4 ((𝐹f𝐺):𝐼⟶ℕ0 ↔ ((𝐹f𝐺) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐹f𝐺)‘𝑥) ∈ ℕ0))
2811, 26, 27sylanbrc 583 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺):𝐼⟶ℕ0)
29 simp1 1136 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → 𝐹𝐷)
301psrbag 21833 . . . . . . 7 (𝐼 ∈ V → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
319, 30syl 17 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
3229, 31mpbid 232 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
3332simprd 495 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹 “ ℕ) ∈ Fin)
3419nn0ge0d 12513 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → 0 ≤ (𝐺𝑥))
3521nn0red 12511 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℝ)
3619nn0red 12511 . . . . . . . . 9 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℝ)
3735, 36subge02d 11777 . . . . . . . 8 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3834, 37mpbid 232 . . . . . . 7 (((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
3938ralrimiva 3126 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
4011, 4, 9, 9, 10, 14, 12ofrfval 7666 . . . . . 6 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∘r𝐹 ↔ ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
4139, 40mpbird 257 . . . . 5 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺) ∘r𝐹)
421psrbaglesupp 21838 . . . . 5 ((𝐹𝐷 ∧ (𝐹f𝐺):𝐼⟶ℕ0 ∧ (𝐹f𝐺) ∘r𝐹) → ((𝐹f𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4329, 28, 41, 42syl3anc 1373 . . . 4 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4433, 43ssfid 9219 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) “ ℕ) ∈ Fin)
451psrbag 21833 . . . 4 (𝐼 ∈ V → ((𝐹f𝐺) ∈ 𝐷 ↔ ((𝐹f𝐺):𝐼⟶ℕ0 ∧ ((𝐹f𝐺) “ ℕ) ∈ Fin)))
469, 45syl 17 . . 3 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∈ 𝐷 ↔ ((𝐹f𝐺):𝐼⟶ℕ0 ∧ ((𝐹f𝐺) “ ℕ) ∈ Fin)))
4728, 44, 46mpbir2and 713 . 2 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → (𝐹f𝐺) ∈ 𝐷)
4847, 41jca 511 1 ((𝐹𝐷𝐺:𝐼⟶ℕ0𝐺r𝐹) → ((𝐹f𝐺) ∈ 𝐷 ∧ (𝐹f𝐺) ∘r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  wss 3917   class class class wbr 5110  ccnv 5640  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  r cofr 7655  m cmap 8802  Fincfn 8921  0cc0 11075  cle 11216  cmin 11412  cn 12193  0cn0 12449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450
This theorem is referenced by:  psrbagconcl  21843  gsumbagdiaglem  21846  rhmpsrlem2  21857  psrlidm  21878  psrridm  21879  psrass1  21880  psrcom  21884  psdmul  22060
  Copyright terms: Public domain W3C validator