| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | psrbag.d | . . . . . . . 8
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} | 
| 2 | 1 | psrbagf 21938 | . . . . . . 7
⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) | 
| 3 | 2 | ffnd 6737 | . . . . . 6
⊢ (𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼) | 
| 4 | 3 | 3ad2ant1 1134 | . . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹 Fn 𝐼) | 
| 5 |  | simp2 1138 | . . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺:𝐼⟶ℕ0) | 
| 6 | 5 | ffnd 6737 | . . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 Fn 𝐼) | 
| 7 |  | id 22 | . . . . . . 7
⊢ (𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷) | 
| 8 | 7, 3 | fndmexd 7926 | . . . . . 6
⊢ (𝐹 ∈ 𝐷 → 𝐼 ∈ V) | 
| 9 | 8 | 3ad2ant1 1134 | . . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐼 ∈ V) | 
| 10 |  | inidm 4227 | . . . . 5
⊢ (𝐼 ∩ 𝐼) = 𝐼 | 
| 11 | 4, 6, 9, 9, 10 | offn 7710 | . . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∘f − 𝐺) Fn 𝐼) | 
| 12 |  | eqidd 2738 | . . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) | 
| 13 |  | eqidd 2738 | . . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) = (𝐺‘𝑥)) | 
| 14 | 4, 6, 9, 9, 10, 12, 13 | ofval 7708 | . . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) | 
| 15 |  | simp3 1139 | . . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 ∘r ≤ 𝐹) | 
| 16 | 6, 4, 9, 9, 10, 13, 12 | ofrfval 7707 | . . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐺 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) | 
| 17 | 15, 16 | mpbid 232 | . . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ≤ (𝐹‘𝑥)) | 
| 18 | 17 | r19.21bi 3251 | . . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) | 
| 19 | 5 | ffvelcdmda 7104 | . . . . . . . 8
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈
ℕ0) | 
| 20 | 2 | 3ad2ant1 1134 | . . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹:𝐼⟶ℕ0) | 
| 21 | 20 | ffvelcdmda 7104 | . . . . . . . 8
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈
ℕ0) | 
| 22 |  | nn0sub 12576 | . . . . . . . 8
⊢ (((𝐺‘𝑥) ∈ ℕ0 ∧ (𝐹‘𝑥) ∈ ℕ0) → ((𝐺‘𝑥) ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈
ℕ0)) | 
| 23 | 19, 21, 22 | syl2anc 584 | . . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → ((𝐺‘𝑥) ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈
ℕ0)) | 
| 24 | 18, 23 | mpbid 232 | . . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈
ℕ0) | 
| 25 | 14, 24 | eqeltrd 2841 | . . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → ((𝐹 ∘f − 𝐺)‘𝑥) ∈
ℕ0) | 
| 26 | 25 | ralrimiva 3146 | . . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ∀𝑥 ∈ 𝐼 ((𝐹 ∘f − 𝐺)‘𝑥) ∈
ℕ0) | 
| 27 |  | ffnfv 7139 | . . . 4
⊢ ((𝐹 ∘f −
𝐺):𝐼⟶ℕ0 ↔ ((𝐹 ∘f −
𝐺) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹 ∘f − 𝐺)‘𝑥) ∈
ℕ0)) | 
| 28 | 11, 26, 27 | sylanbrc 583 | . . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∘f − 𝐺):𝐼⟶ℕ0) | 
| 29 |  | simp1 1137 | . . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹 ∈ 𝐷) | 
| 30 | 1 | psrbag 21937 | . . . . . . 7
⊢ (𝐼 ∈ V → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin))) | 
| 31 | 9, 30 | syl 17 | . . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin))) | 
| 32 | 29, 31 | mpbid 232 | . . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin)) | 
| 33 | 32 | simprd 495 | . . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡𝐹 “ ℕ) ∈
Fin) | 
| 34 | 19 | nn0ge0d 12590 | . . . . . . . 8
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → 0 ≤ (𝐺‘𝑥)) | 
| 35 | 21 | nn0red 12588 | . . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ℝ) | 
| 36 | 19 | nn0red 12588 | . . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ ℝ) | 
| 37 | 35, 36 | subge02d 11855 | . . . . . . . 8
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (0 ≤ (𝐺‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥))) | 
| 38 | 34, 37 | mpbid 232 | . . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥)) | 
| 39 | 38 | ralrimiva 3146 | . . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥)) | 
| 40 | 11, 4, 9, 9, 10, 14, 12 | ofrfval 7707 | . . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ((𝐹 ∘f − 𝐺) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥))) | 
| 41 | 39, 40 | mpbird 257 | . . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∘f − 𝐺) ∘r ≤ 𝐹) | 
| 42 | 1 | psrbaglesupp 21942 | . . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ (𝐹 ∘f − 𝐺):𝐼⟶ℕ0 ∧ (𝐹 ∘f −
𝐺) ∘r ≤
𝐹) → (◡(𝐹 ∘f − 𝐺) “ ℕ) ⊆
(◡𝐹 “ ℕ)) | 
| 43 | 29, 28, 41, 42 | syl3anc 1373 | . . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡(𝐹 ∘f − 𝐺) “ ℕ) ⊆
(◡𝐹 “ ℕ)) | 
| 44 | 33, 43 | ssfid 9301 | . . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡(𝐹 ∘f − 𝐺) “ ℕ) ∈
Fin) | 
| 45 | 1 | psrbag 21937 | . . . 4
⊢ (𝐼 ∈ V → ((𝐹 ∘f −
𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f − 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f − 𝐺) “ ℕ) ∈
Fin))) | 
| 46 | 9, 45 | syl 17 | . . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ((𝐹 ∘f − 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f − 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f − 𝐺) “ ℕ) ∈
Fin))) | 
| 47 | 28, 44, 46 | mpbir2and 713 | . 2
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∘f − 𝐺) ∈ 𝐷) | 
| 48 | 47, 41 | jca 511 | 1
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ((𝐹 ∘f − 𝐺) ∈ 𝐷 ∧ (𝐹 ∘f − 𝐺) ∘r ≤ 𝐹)) |