Step | Hyp | Ref
| Expression |
1 | | psrbag.d |
. . . . . . . 8
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑓 “ ℕ) ∈
Fin} |
2 | 1 | psrbagf 21031 |
. . . . . . 7
⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
3 | 2 | ffnd 6585 |
. . . . . 6
⊢ (𝐹 ∈ 𝐷 → 𝐹 Fn 𝐼) |
4 | 3 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹 Fn 𝐼) |
5 | | simp2 1135 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺:𝐼⟶ℕ0) |
6 | 5 | ffnd 6585 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 Fn 𝐼) |
7 | | id 22 |
. . . . . . 7
⊢ (𝐹 ∈ 𝐷 → 𝐹 ∈ 𝐷) |
8 | 7, 3 | fndmexd 7727 |
. . . . . 6
⊢ (𝐹 ∈ 𝐷 → 𝐼 ∈ V) |
9 | 8 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐼 ∈ V) |
10 | | inidm 4149 |
. . . . 5
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
11 | 4, 6, 9, 9, 10 | offn 7524 |
. . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∘f − 𝐺) Fn 𝐼) |
12 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
13 | | eqidd 2739 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
14 | 4, 6, 9, 9, 10, 12, 13 | ofval 7522 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → ((𝐹 ∘f − 𝐺)‘𝑥) = ((𝐹‘𝑥) − (𝐺‘𝑥))) |
15 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐺 ∘r ≤ 𝐹) |
16 | 6, 4, 9, 9, 10, 13, 12 | ofrfval 7521 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐺 ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ≤ (𝐹‘𝑥))) |
17 | 15, 16 | mpbid 231 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ∀𝑥 ∈ 𝐼 (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
18 | 17 | r19.21bi 3132 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ≤ (𝐹‘𝑥)) |
19 | 5 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈
ℕ0) |
20 | 2 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹:𝐼⟶ℕ0) |
21 | 20 | ffvelrnda 6943 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈
ℕ0) |
22 | | nn0sub 12213 |
. . . . . . . 8
⊢ (((𝐺‘𝑥) ∈ ℕ0 ∧ (𝐹‘𝑥) ∈ ℕ0) → ((𝐺‘𝑥) ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈
ℕ0)) |
23 | 19, 21, 22 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → ((𝐺‘𝑥) ≤ (𝐹‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈
ℕ0)) |
24 | 18, 23 | mpbid 231 |
. . . . . 6
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) − (𝐺‘𝑥)) ∈
ℕ0) |
25 | 14, 24 | eqeltrd 2839 |
. . . . 5
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → ((𝐹 ∘f − 𝐺)‘𝑥) ∈
ℕ0) |
26 | 25 | ralrimiva 3107 |
. . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ∀𝑥 ∈ 𝐼 ((𝐹 ∘f − 𝐺)‘𝑥) ∈
ℕ0) |
27 | | ffnfv 6974 |
. . . 4
⊢ ((𝐹 ∘f −
𝐺):𝐼⟶ℕ0 ↔ ((𝐹 ∘f −
𝐺) Fn 𝐼 ∧ ∀𝑥 ∈ 𝐼 ((𝐹 ∘f − 𝐺)‘𝑥) ∈
ℕ0)) |
28 | 11, 26, 27 | sylanbrc 582 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∘f − 𝐺):𝐼⟶ℕ0) |
29 | | simp1 1134 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → 𝐹 ∈ 𝐷) |
30 | 1 | psrbag 21030 |
. . . . . . 7
⊢ (𝐼 ∈ V → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin))) |
31 | 9, 30 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin))) |
32 | 29, 31 | mpbid 231 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈
Fin)) |
33 | 32 | simprd 495 |
. . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡𝐹 “ ℕ) ∈
Fin) |
34 | 19 | nn0ge0d 12226 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → 0 ≤ (𝐺‘𝑥)) |
35 | 21 | nn0red 12224 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ ℝ) |
36 | 19 | nn0red 12224 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ ℝ) |
37 | 35, 36 | subge02d 11497 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → (0 ≤ (𝐺‘𝑥) ↔ ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥))) |
38 | 34, 37 | mpbid 231 |
. . . . . . 7
⊢ (((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥)) |
39 | 38 | ralrimiva 3107 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥)) |
40 | 11, 4, 9, 9, 10, 14, 12 | ofrfval 7521 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ((𝐹 ∘f − 𝐺) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ 𝐼 ((𝐹‘𝑥) − (𝐺‘𝑥)) ≤ (𝐹‘𝑥))) |
41 | 39, 40 | mpbird 256 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∘f − 𝐺) ∘r ≤ 𝐹) |
42 | 1 | psrbaglesupp 21037 |
. . . . 5
⊢ ((𝐹 ∈ 𝐷 ∧ (𝐹 ∘f − 𝐺):𝐼⟶ℕ0 ∧ (𝐹 ∘f −
𝐺) ∘r ≤
𝐹) → (◡(𝐹 ∘f − 𝐺) “ ℕ) ⊆
(◡𝐹 “ ℕ)) |
43 | 29, 28, 41, 42 | syl3anc 1369 |
. . . 4
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡(𝐹 ∘f − 𝐺) “ ℕ) ⊆
(◡𝐹 “ ℕ)) |
44 | 33, 43 | ssfid 8971 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (◡(𝐹 ∘f − 𝐺) “ ℕ) ∈
Fin) |
45 | 1 | psrbag 21030 |
. . . 4
⊢ (𝐼 ∈ V → ((𝐹 ∘f −
𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f − 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f − 𝐺) “ ℕ) ∈
Fin))) |
46 | 9, 45 | syl 17 |
. . 3
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ((𝐹 ∘f − 𝐺) ∈ 𝐷 ↔ ((𝐹 ∘f − 𝐺):𝐼⟶ℕ0 ∧ (◡(𝐹 ∘f − 𝐺) “ ℕ) ∈
Fin))) |
47 | 28, 44, 46 | mpbir2and 709 |
. 2
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → (𝐹 ∘f − 𝐺) ∈ 𝐷) |
48 | 47, 41 | jca 511 |
1
⊢ ((𝐹 ∈ 𝐷 ∧ 𝐺:𝐼⟶ℕ0 ∧ 𝐺 ∘r ≤ 𝐹) → ((𝐹 ∘f − 𝐺) ∈ 𝐷 ∧ (𝐹 ∘f − 𝐺) ∘r ≤ 𝐹)) |