MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagev2 Structured version   Visualization version   GIF version

Theorem psrbagev2 22041
Description: Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.)
Hypotheses
Ref Expression
psrbagev2.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrbagev2.c 𝐶 = (Base‘𝑇)
psrbagev2.x · = (.g𝑇)
psrbagev2.t (𝜑𝑇 ∈ CMnd)
psrbagev2.b (𝜑𝐵𝐷)
psrbagev2.g (𝜑𝐺:𝐼𝐶)
Assertion
Ref Expression
psrbagev2 (𝜑 → (𝑇 Σg (𝐵f · 𝐺)) ∈ 𝐶)
Distinct variable groups:   𝐵,   ,𝐼
Allowed substitution hints:   𝜑()   𝐶()   𝐷()   𝑇()   · ()   𝐺()

Proof of Theorem psrbagev2
StepHypRef Expression
1 psrbagev2.c . 2 𝐶 = (Base‘𝑇)
2 eqid 2736 . 2 (0g𝑇) = (0g𝑇)
3 psrbagev2.t . 2 (𝜑𝑇 ∈ CMnd)
4 ovexd 7445 . . 3 (𝜑 → (𝐵f · 𝐺) ∈ V)
5 psrbagev2.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
6 psrbagev2.x . . . . . 6 · = (.g𝑇)
7 psrbagev2.b . . . . . 6 (𝜑𝐵𝐷)
8 psrbagev2.g . . . . . 6 (𝜑𝐺:𝐼𝐶)
95, 1, 6, 2, 3, 7, 8psrbagev1 22040 . . . . 5 (𝜑 → ((𝐵f · 𝐺):𝐼𝐶 ∧ (𝐵f · 𝐺) finSupp (0g𝑇)))
109simpld 494 . . . 4 (𝜑 → (𝐵f · 𝐺):𝐼𝐶)
1110ffnd 6712 . . 3 (𝜑 → (𝐵f · 𝐺) Fn 𝐼)
124, 11fndmexd 7905 . 2 (𝜑𝐼 ∈ V)
139simprd 495 . 2 (𝜑 → (𝐵f · 𝐺) finSupp (0g𝑇))
141, 2, 3, 12, 10, 13gsumcl 19901 1 (𝜑 → (𝑇 Σg (𝐵f · 𝐺)) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464   class class class wbr 5124  ccnv 5658  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  f cof 7674  m cmap 8845  Fincfn 8964   finSupp cfsupp 9378  cn 12245  0cn0 12506  Basecbs 17233  0gc0g 17458   Σg cgsu 17459  .gcmg 19055  CMndccmn 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-0g 17460  df-gsum 17461  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mulg 19056  df-cntz 19305  df-cmn 19768
This theorem is referenced by:  evlslem6  22044  evlslem1  22045
  Copyright terms: Public domain W3C validator