![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagev2 | Structured version Visualization version GIF version |
Description: Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.) |
Ref | Expression |
---|---|
psrbagev1.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrbagev1.c | ⊢ 𝐶 = (Base‘𝑇) |
psrbagev1.x | ⊢ · = (.g‘𝑇) |
psrbagev1.z | ⊢ 0 = (0g‘𝑇) |
psrbagev1.t | ⊢ (𝜑 → 𝑇 ∈ CMnd) |
psrbagev1.b | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
psrbagev1.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
psrbagev1.i | ⊢ (𝜑 → 𝐼 ∈ V) |
Ref | Expression |
---|---|
psrbagev2 | ⊢ (𝜑 → (𝑇 Σg (𝐵 ∘𝑓 · 𝐺)) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbagev1.c | . 2 ⊢ 𝐶 = (Base‘𝑇) | |
2 | psrbagev1.z | . 2 ⊢ 0 = (0g‘𝑇) | |
3 | psrbagev1.t | . 2 ⊢ (𝜑 → 𝑇 ∈ CMnd) | |
4 | psrbagev1.i | . 2 ⊢ (𝜑 → 𝐼 ∈ V) | |
5 | psrbagev1.d | . . . 4 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | psrbagev1.x | . . . 4 ⊢ · = (.g‘𝑇) | |
7 | psrbagev1.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
8 | psrbagev1.g | . . . 4 ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) | |
9 | 5, 1, 6, 2, 3, 7, 8, 4 | psrbagev1 19906 | . . 3 ⊢ (𝜑 → ((𝐵 ∘𝑓 · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘𝑓 · 𝐺) finSupp 0 )) |
10 | 9 | simpld 490 | . 2 ⊢ (𝜑 → (𝐵 ∘𝑓 · 𝐺):𝐼⟶𝐶) |
11 | 9 | simprd 491 | . 2 ⊢ (𝜑 → (𝐵 ∘𝑓 · 𝐺) finSupp 0 ) |
12 | 1, 2, 3, 4, 10, 11 | gsumcl 18702 | 1 ⊢ (𝜑 → (𝑇 Σg (𝐵 ∘𝑓 · 𝐺)) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 {crab 3093 Vcvv 3397 class class class wbr 4886 ◡ccnv 5354 “ cima 5358 ⟶wf 6131 ‘cfv 6135 (class class class)co 6922 ∘𝑓 cof 7172 ↑𝑚 cmap 8140 Fincfn 8241 finSupp cfsupp 8563 ℕcn 11374 ℕ0cn0 11642 Basecbs 16255 0gc0g 16486 Σg cgsu 16487 .gcmg 17927 CMndccmn 18579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-oi 8704 df-card 9098 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-fzo 12785 df-seq 13120 df-hash 13436 df-0g 16488 df-gsum 16489 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-mulg 17928 df-cntz 18133 df-cmn 18581 |
This theorem is referenced by: evlslem6 19909 evlslem1 19911 |
Copyright terms: Public domain | W3C validator |