![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagev2 | Structured version Visualization version GIF version |
Description: Closure of a sum using a bag of multipliers. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Proof shortened by AV, 18-Jul-2019.) (Revised by AV, 11-Apr-2024.) Remove a sethood hypothesis. (Revised by SN, 7-Aug-2024.) |
Ref | Expression |
---|---|
psrbagev2.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
psrbagev2.c | ⊢ 𝐶 = (Base‘𝑇) |
psrbagev2.x | ⊢ · = (.g‘𝑇) |
psrbagev2.t | ⊢ (𝜑 → 𝑇 ∈ CMnd) |
psrbagev2.b | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
psrbagev2.g | ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) |
Ref | Expression |
---|---|
psrbagev2 | ⊢ (𝜑 → (𝑇 Σg (𝐵 ∘f · 𝐺)) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbagev2.c | . 2 ⊢ 𝐶 = (Base‘𝑇) | |
2 | eqid 2731 | . 2 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
3 | psrbagev2.t | . 2 ⊢ (𝜑 → 𝑇 ∈ CMnd) | |
4 | ovexd 7447 | . . 3 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) ∈ V) | |
5 | psrbagev2.d | . . . . . 6 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
6 | psrbagev2.x | . . . . . 6 ⊢ · = (.g‘𝑇) | |
7 | psrbagev2.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
8 | psrbagev2.g | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐼⟶𝐶) | |
9 | 5, 1, 6, 2, 3, 7, 8 | psrbagev1 21949 | . . . . 5 ⊢ (𝜑 → ((𝐵 ∘f · 𝐺):𝐼⟶𝐶 ∧ (𝐵 ∘f · 𝐺) finSupp (0g‘𝑇))) |
10 | 9 | simpld 494 | . . . 4 ⊢ (𝜑 → (𝐵 ∘f · 𝐺):𝐼⟶𝐶) |
11 | 10 | ffnd 6718 | . . 3 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) Fn 𝐼) |
12 | 4, 11 | fndmexd 7901 | . 2 ⊢ (𝜑 → 𝐼 ∈ V) |
13 | 9 | simprd 495 | . 2 ⊢ (𝜑 → (𝐵 ∘f · 𝐺) finSupp (0g‘𝑇)) |
14 | 1, 2, 3, 12, 10, 13 | gsumcl 19831 | 1 ⊢ (𝜑 → (𝑇 Σg (𝐵 ∘f · 𝐺)) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3431 Vcvv 3473 class class class wbr 5148 ◡ccnv 5675 “ cima 5679 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ∘f cof 7672 ↑m cmap 8826 Fincfn 8945 finSupp cfsupp 9367 ℕcn 12219 ℕ0cn0 12479 Basecbs 17151 0gc0g 17392 Σg cgsu 17393 .gcmg 18993 CMndccmn 19696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-0g 17394 df-gsum 17395 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mulg 18994 df-cntz 19229 df-cmn 19698 |
This theorem is referenced by: evlslem6 21955 evlslem1 21956 |
Copyright terms: Public domain | W3C validator |