Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdifsuppconst Structured version   Visualization version   GIF version

Theorem fdifsuppconst 32612
Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypothesis
Ref Expression
fdifsuppconst.1 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍))
Assertion
Ref Expression
fdifsuppconst ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))

Proof of Theorem fdifsuppconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 6546 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 216 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
32ad2antrr 726 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → 𝐹 Fn dom 𝐹)
4 fdifsuppconst.1 . . . . 5 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍))
5 difssd 4100 . . . . 5 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⊆ dom 𝐹)
64, 5eqsstrid 3985 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → 𝐴 ⊆ dom 𝐹)
73, 6fnssresd 6642 . . 3 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐹𝐴) Fn 𝐴)
8 fnconstg 6748 . . . 4 (𝑍𝑊 → (𝐴 × {𝑍}) Fn 𝐴)
98adantl 481 . . 3 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐴 × {𝑍}) Fn 𝐴)
103adantr 480 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝐹 Fn dom 𝐹)
11 dmexg 7877 . . . . . 6 (𝐹𝑉 → dom 𝐹 ∈ V)
1211ad3antlr 731 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → dom 𝐹 ∈ V)
13 simplr 768 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑍𝑊)
144eleq2i 2820 . . . . . . 7 (𝑥𝐴𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1514biimpi 216 . . . . . 6 (𝑥𝐴𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1615adantl 481 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1710, 12, 13, 16fvdifsupp 8150 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → (𝐹𝑥) = 𝑍)
18 simpr 484 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑥𝐴)
1918fvresd 6878 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
20 fvconst2g 7176 . . . . 5 ((𝑍𝑊𝑥𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍)
2120adantll 714 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍)
2217, 19, 213eqtr4d 2774 . . 3 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐹𝐴)‘𝑥) = ((𝐴 × {𝑍})‘𝑥))
237, 9, 22eqfnfvd 7006 . 2 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))
24233impa 1109 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  {csn 4589   × cxp 5636  dom cdm 5638  cres 5640  Fun wfun 6505   Fn wfn 6506  cfv 6511  (class class class)co 7387   supp csupp 8139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-supp 8140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator