Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdifsuppconst Structured version   Visualization version   GIF version

Theorem fdifsuppconst 30532
Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypothesis
Ref Expression
fdifsuppconst.1 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍))
Assertion
Ref Expression
fdifsuppconst ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))

Proof of Theorem fdifsuppconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 6358 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 219 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
32ad2antrr 726 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → 𝐹 Fn dom 𝐹)
4 fdifsuppconst.1 . . . . 5 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍))
5 difssd 4034 . . . . 5 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⊆ dom 𝐹)
64, 5eqsstrid 3936 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → 𝐴 ⊆ dom 𝐹)
73, 6fnssresd 6447 . . 3 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐹𝐴) Fn 𝐴)
8 fnconstg 6545 . . . 4 (𝑍𝑊 → (𝐴 × {𝑍}) Fn 𝐴)
98adantl 486 . . 3 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐴 × {𝑍}) Fn 𝐴)
103adantr 485 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝐹 Fn dom 𝐹)
11 dmexg 7606 . . . . . 6 (𝐹𝑉 → dom 𝐹 ∈ V)
1211ad3antlr 731 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → dom 𝐹 ∈ V)
13 simplr 769 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑍𝑊)
144eleq2i 2842 . . . . . . 7 (𝑥𝐴𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1514biimpi 219 . . . . . 6 (𝑥𝐴𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1615adantl 486 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1710, 12, 13, 16fvdifsupp 30527 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → (𝐹𝑥) = 𝑍)
18 simpr 489 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑥𝐴)
1918fvresd 6671 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
20 fvconst2g 6948 . . . . 5 ((𝑍𝑊𝑥𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍)
2120adantll 714 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍)
2217, 19, 213eqtr4d 2804 . . 3 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐹𝐴)‘𝑥) = ((𝐴 × {𝑍})‘𝑥))
237, 9, 22eqfnfvd 6789 . 2 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))
24233impa 1108 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  Vcvv 3407  cdif 3851  {csn 4515   × cxp 5515  dom cdm 5517  cres 5519  Fun wfun 6322   Fn wfn 6323  cfv 6328  (class class class)co 7143   supp csupp 7828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-supp 7829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator