Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdifsuppconst Structured version   Visualization version   GIF version

Theorem fdifsuppconst 32619
Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypothesis
Ref Expression
fdifsuppconst.1 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍))
Assertion
Ref Expression
fdifsuppconst ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))

Proof of Theorem fdifsuppconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 6549 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 216 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
32ad2antrr 726 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → 𝐹 Fn dom 𝐹)
4 fdifsuppconst.1 . . . . 5 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍))
5 difssd 4103 . . . . 5 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⊆ dom 𝐹)
64, 5eqsstrid 3988 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → 𝐴 ⊆ dom 𝐹)
73, 6fnssresd 6645 . . 3 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐹𝐴) Fn 𝐴)
8 fnconstg 6751 . . . 4 (𝑍𝑊 → (𝐴 × {𝑍}) Fn 𝐴)
98adantl 481 . . 3 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐴 × {𝑍}) Fn 𝐴)
103adantr 480 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝐹 Fn dom 𝐹)
11 dmexg 7880 . . . . . 6 (𝐹𝑉 → dom 𝐹 ∈ V)
1211ad3antlr 731 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → dom 𝐹 ∈ V)
13 simplr 768 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑍𝑊)
144eleq2i 2821 . . . . . . 7 (𝑥𝐴𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1514biimpi 216 . . . . . 6 (𝑥𝐴𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1615adantl 481 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1710, 12, 13, 16fvdifsupp 8153 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → (𝐹𝑥) = 𝑍)
18 simpr 484 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑥𝐴)
1918fvresd 6881 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
20 fvconst2g 7179 . . . . 5 ((𝑍𝑊𝑥𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍)
2120adantll 714 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍)
2217, 19, 213eqtr4d 2775 . . 3 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐹𝐴)‘𝑥) = ((𝐴 × {𝑍})‘𝑥))
237, 9, 22eqfnfvd 7009 . 2 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))
24233impa 1109 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  {csn 4592   × cxp 5639  dom cdm 5641  cres 5643  Fun wfun 6508   Fn wfn 6509  cfv 6514  (class class class)co 7390   supp csupp 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-supp 8143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator