Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdifsuppconst | Structured version Visualization version GIF version |
Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
Ref | Expression |
---|---|
fdifsuppconst.1 | ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) |
Ref | Expression |
---|---|
fdifsuppconst | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6464 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | 1 | biimpi 215 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
3 | 2 | ad2antrr 723 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → 𝐹 Fn dom 𝐹) |
4 | fdifsuppconst.1 | . . . . 5 ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) | |
5 | difssd 4067 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⊆ dom 𝐹) | |
6 | 4, 5 | eqsstrid 3969 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → 𝐴 ⊆ dom 𝐹) |
7 | 3, 6 | fnssresd 6556 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) Fn 𝐴) |
8 | fnconstg 6662 | . . . 4 ⊢ (𝑍 ∈ 𝑊 → (𝐴 × {𝑍}) Fn 𝐴) | |
9 | 8 | adantl 482 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐴 × {𝑍}) Fn 𝐴) |
10 | 3 | adantr 481 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn dom 𝐹) |
11 | dmexg 7750 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
12 | 11 | ad3antlr 728 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → dom 𝐹 ∈ V) |
13 | simplr 766 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑍 ∈ 𝑊) | |
14 | 4 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
15 | 14 | biimpi 215 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
16 | 15 | adantl 482 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
17 | 10, 12, 13, 16 | fvdifsupp 31018 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝑍) |
18 | simpr 485 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
19 | 18 | fvresd 6794 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) |
20 | fvconst2g 7077 | . . . . 5 ⊢ ((𝑍 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍) | |
21 | 20 | adantll 711 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍) |
22 | 17, 19, 21 | 3eqtr4d 2788 | . . 3 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = ((𝐴 × {𝑍})‘𝑥)) |
23 | 7, 9, 22 | eqfnfvd 6912 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
24 | 23 | 3impa 1109 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 {csn 4561 × cxp 5587 dom cdm 5589 ↾ cres 5591 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 supp csupp 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-supp 7978 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |