![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdifsuppconst | Structured version Visualization version GIF version |
Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
Ref | Expression |
---|---|
fdifsuppconst.1 | ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) |
Ref | Expression |
---|---|
fdifsuppconst | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6578 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | 1 | biimpi 215 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
3 | 2 | ad2antrr 723 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → 𝐹 Fn dom 𝐹) |
4 | fdifsuppconst.1 | . . . . 5 ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) | |
5 | difssd 4132 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⊆ dom 𝐹) | |
6 | 4, 5 | eqsstrid 4030 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → 𝐴 ⊆ dom 𝐹) |
7 | 3, 6 | fnssresd 6674 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) Fn 𝐴) |
8 | fnconstg 6779 | . . . 4 ⊢ (𝑍 ∈ 𝑊 → (𝐴 × {𝑍}) Fn 𝐴) | |
9 | 8 | adantl 481 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐴 × {𝑍}) Fn 𝐴) |
10 | 3 | adantr 480 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn dom 𝐹) |
11 | dmexg 7898 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
12 | 11 | ad3antlr 728 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → dom 𝐹 ∈ V) |
13 | simplr 766 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑍 ∈ 𝑊) | |
14 | 4 | eleq2i 2824 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
15 | 14 | biimpi 215 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
16 | 15 | adantl 481 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
17 | 10, 12, 13, 16 | fvdifsupp 32175 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝑍) |
18 | simpr 484 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
19 | 18 | fvresd 6911 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) |
20 | fvconst2g 7205 | . . . . 5 ⊢ ((𝑍 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍) | |
21 | 20 | adantll 711 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍) |
22 | 17, 19, 21 | 3eqtr4d 2781 | . . 3 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = ((𝐴 × {𝑍})‘𝑥)) |
23 | 7, 9, 22 | eqfnfvd 7035 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
24 | 23 | 3impa 1109 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∖ cdif 3945 {csn 4628 × cxp 5674 dom cdm 5676 ↾ cres 5678 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 (class class class)co 7412 supp csupp 8150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-supp 8151 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |