![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdifsuppconst | Structured version Visualization version GIF version |
Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
Ref | Expression |
---|---|
fdifsuppconst.1 | ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) |
Ref | Expression |
---|---|
fdifsuppconst | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6570 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | 1 | biimpi 215 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
3 | 2 | ad2antrr 725 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → 𝐹 Fn dom 𝐹) |
4 | fdifsuppconst.1 | . . . . 5 ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) | |
5 | difssd 4130 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⊆ dom 𝐹) | |
6 | 4, 5 | eqsstrid 4028 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → 𝐴 ⊆ dom 𝐹) |
7 | 3, 6 | fnssresd 6664 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) Fn 𝐴) |
8 | fnconstg 6769 | . . . 4 ⊢ (𝑍 ∈ 𝑊 → (𝐴 × {𝑍}) Fn 𝐴) | |
9 | 8 | adantl 483 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐴 × {𝑍}) Fn 𝐴) |
10 | 3 | adantr 482 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn dom 𝐹) |
11 | dmexg 7881 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
12 | 11 | ad3antlr 730 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → dom 𝐹 ∈ V) |
13 | simplr 768 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑍 ∈ 𝑊) | |
14 | 4 | eleq2i 2826 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
15 | 14 | biimpi 215 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
16 | 15 | adantl 483 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
17 | 10, 12, 13, 16 | fvdifsupp 31877 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝑍) |
18 | simpr 486 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
19 | 18 | fvresd 6901 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) |
20 | fvconst2g 7190 | . . . . 5 ⊢ ((𝑍 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍) | |
21 | 20 | adantll 713 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍) |
22 | 17, 19, 21 | 3eqtr4d 2783 | . . 3 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = ((𝐴 × {𝑍})‘𝑥)) |
23 | 7, 9, 22 | eqfnfvd 7024 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
24 | 23 | 3impa 1111 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∖ cdif 3943 {csn 4624 × cxp 5670 dom cdm 5672 ↾ cres 5674 Fun wfun 6529 Fn wfn 6530 ‘cfv 6535 (class class class)co 7396 supp csupp 8133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-ov 7399 df-oprab 7400 df-mpo 7401 df-supp 8134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |