Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdifsuppconst Structured version   Visualization version   GIF version

Theorem fdifsuppconst 31023
Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypothesis
Ref Expression
fdifsuppconst.1 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍))
Assertion
Ref Expression
fdifsuppconst ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))

Proof of Theorem fdifsuppconst
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfn 6464 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 215 . . . . 5 (Fun 𝐹𝐹 Fn dom 𝐹)
32ad2antrr 723 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → 𝐹 Fn dom 𝐹)
4 fdifsuppconst.1 . . . . 5 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍))
5 difssd 4067 . . . . 5 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⊆ dom 𝐹)
64, 5eqsstrid 3969 . . . 4 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → 𝐴 ⊆ dom 𝐹)
73, 6fnssresd 6556 . . 3 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐹𝐴) Fn 𝐴)
8 fnconstg 6662 . . . 4 (𝑍𝑊 → (𝐴 × {𝑍}) Fn 𝐴)
98adantl 482 . . 3 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐴 × {𝑍}) Fn 𝐴)
103adantr 481 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝐹 Fn dom 𝐹)
11 dmexg 7750 . . . . . 6 (𝐹𝑉 → dom 𝐹 ∈ V)
1211ad3antlr 728 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → dom 𝐹 ∈ V)
13 simplr 766 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑍𝑊)
144eleq2i 2830 . . . . . . 7 (𝑥𝐴𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1514biimpi 215 . . . . . 6 (𝑥𝐴𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1615adantl 482 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍)))
1710, 12, 13, 16fvdifsupp 31018 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → (𝐹𝑥) = 𝑍)
18 simpr 485 . . . . 5 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → 𝑥𝐴)
1918fvresd 6794 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
20 fvconst2g 7077 . . . . 5 ((𝑍𝑊𝑥𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍)
2120adantll 711 . . . 4 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍)
2217, 19, 213eqtr4d 2788 . . 3 ((((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) ∧ 𝑥𝐴) → ((𝐹𝐴)‘𝑥) = ((𝐴 × {𝑍})‘𝑥))
237, 9, 22eqfnfvd 6912 . 2 (((Fun 𝐹𝐹𝑉) ∧ 𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))
24233impa 1109 1 ((Fun 𝐹𝐹𝑉𝑍𝑊) → (𝐹𝐴) = (𝐴 × {𝑍}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  {csn 4561   × cxp 5587  dom cdm 5589  cres 5591  Fun wfun 6427   Fn wfn 6428  cfv 6433  (class class class)co 7275   supp csupp 7977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-supp 7978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator