Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdifsuppconst | Structured version Visualization version GIF version |
Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
Ref | Expression |
---|---|
fdifsuppconst.1 | ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) |
Ref | Expression |
---|---|
fdifsuppconst | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6448 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | 1 | biimpi 215 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
3 | 2 | ad2antrr 722 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → 𝐹 Fn dom 𝐹) |
4 | fdifsuppconst.1 | . . . . 5 ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) | |
5 | difssd 4063 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⊆ dom 𝐹) | |
6 | 4, 5 | eqsstrid 3965 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → 𝐴 ⊆ dom 𝐹) |
7 | 3, 6 | fnssresd 6540 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) Fn 𝐴) |
8 | fnconstg 6646 | . . . 4 ⊢ (𝑍 ∈ 𝑊 → (𝐴 × {𝑍}) Fn 𝐴) | |
9 | 8 | adantl 481 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐴 × {𝑍}) Fn 𝐴) |
10 | 3 | adantr 480 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn dom 𝐹) |
11 | dmexg 7724 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
12 | 11 | ad3antlr 727 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → dom 𝐹 ∈ V) |
13 | simplr 765 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑍 ∈ 𝑊) | |
14 | 4 | eleq2i 2830 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
15 | 14 | biimpi 215 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
16 | 15 | adantl 481 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
17 | 10, 12, 13, 16 | fvdifsupp 30920 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝑍) |
18 | simpr 484 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
19 | 18 | fvresd 6776 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) |
20 | fvconst2g 7059 | . . . . 5 ⊢ ((𝑍 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍) | |
21 | 20 | adantll 710 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍) |
22 | 17, 19, 21 | 3eqtr4d 2788 | . . 3 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = ((𝐴 × {𝑍})‘𝑥)) |
23 | 7, 9, 22 | eqfnfvd 6894 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
24 | 23 | 3impa 1108 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∖ cdif 3880 {csn 4558 × cxp 5578 dom cdm 5580 ↾ cres 5582 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |