| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fdifsuppconst | Structured version Visualization version GIF version | ||
| Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
| Ref | Expression |
|---|---|
| fdifsuppconst.1 | ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) |
| Ref | Expression |
|---|---|
| fdifsuppconst | ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6549 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | 1 | biimpi 216 | . . . . 5 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
| 3 | 2 | ad2antrr 726 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → 𝐹 Fn dom 𝐹) |
| 4 | fdifsuppconst.1 | . . . . 5 ⊢ 𝐴 = (dom 𝐹 ∖ (𝐹 supp 𝑍)) | |
| 5 | difssd 4103 | . . . . 5 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (dom 𝐹 ∖ (𝐹 supp 𝑍)) ⊆ dom 𝐹) | |
| 6 | 4, 5 | eqsstrid 3988 | . . . 4 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → 𝐴 ⊆ dom 𝐹) |
| 7 | 3, 6 | fnssresd 6645 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) Fn 𝐴) |
| 8 | fnconstg 6751 | . . . 4 ⊢ (𝑍 ∈ 𝑊 → (𝐴 × {𝑍}) Fn 𝐴) | |
| 9 | 8 | adantl 481 | . . 3 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐴 × {𝑍}) Fn 𝐴) |
| 10 | 3 | adantr 480 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝐹 Fn dom 𝐹) |
| 11 | dmexg 7880 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 12 | 11 | ad3antlr 731 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → dom 𝐹 ∈ V) |
| 13 | simplr 768 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑍 ∈ 𝑊) | |
| 14 | 4 | eleq2i 2821 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
| 15 | 14 | biimpi 216 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
| 16 | 15 | adantl 481 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (dom 𝐹 ∖ (𝐹 supp 𝑍))) |
| 17 | 10, 12, 13, 16 | fvdifsupp 8153 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝑍) |
| 18 | simpr 484 | . . . . 5 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 19 | 18 | fvresd 6881 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) |
| 20 | fvconst2g 7179 | . . . . 5 ⊢ ((𝑍 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍) | |
| 21 | 20 | adantll 714 | . . . 4 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝑍})‘𝑥) = 𝑍) |
| 22 | 17, 19, 21 | 3eqtr4d 2775 | . . 3 ⊢ ((((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = ((𝐴 × {𝑍})‘𝑥)) |
| 23 | 7, 9, 22 | eqfnfvd 7009 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐹 ∈ 𝑉) ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
| 24 | 23 | 3impa 1109 | 1 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹 ↾ 𝐴) = (𝐴 × {𝑍})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 {csn 4592 × cxp 5639 dom cdm 5641 ↾ cres 5643 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-supp 8143 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |