![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst2 | Structured version Visualization version GIF version |
Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimconst2.p | ⊢ Ⅎ𝑘𝜑 |
xlimconst2.k | ⊢ Ⅎ𝑘𝐹 |
xlimconst2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
xlimconst2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
xlimconst2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
xlimconst2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xlimconst2.e | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) |
Ref | Expression |
---|---|
xlimconst2 | ⊢ (𝜑 → 𝐹~~>*𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimconst2.p | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | xlimconst2.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
3 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑘(ℤ≥‘𝑁) | |
4 | 2, 3 | nfres 5982 | . . 3 ⊢ Ⅎ𝑘(𝐹 ↾ (ℤ≥‘𝑁)) |
5 | xlimconst2.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | xlimconst2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
7 | 5, 6 | eluzelz2d 44110 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
8 | eqid 2733 | . . 3 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
9 | xlimconst2.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
10 | 9 | ffnd 6716 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
11 | 5, 6 | uzssd2 44114 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
12 | 10, 11 | fnssresd 6672 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁)) Fn (ℤ≥‘𝑁)) |
13 | xlimconst2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
14 | fvres 6908 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) | |
15 | 14 | adantl 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) |
16 | xlimconst2.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) | |
17 | 15, 16 | eqtrd 2773 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = 𝐴) |
18 | 1, 4, 7, 8, 12, 13, 17 | xlimconst 44528 | . 2 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴) |
19 | 5, 9 | fuzxrpmcn 44531 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
20 | 19, 7 | xlimres 44524 | . 2 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴)) |
21 | 18, 20 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 class class class wbr 5148 ↾ cres 5678 ⟶wf 6537 ‘cfv 6541 ℝ*cxr 11244 ℤ≥cuz 12819 ~~>*clsxlim 44521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-pre-lttri 11181 ax-pre-lttrn 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-1o 8463 df-er 8700 df-pm 8820 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fi 9403 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-neg 11444 df-z 12556 df-uz 12820 df-topgen 17386 df-ordt 17444 df-ps 18516 df-tsr 18517 df-top 22388 df-topon 22405 df-bases 22441 df-lm 22725 df-xlim 44522 |
This theorem is referenced by: climxlim2lem 44548 |
Copyright terms: Public domain | W3C validator |