| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst2 | Structured version Visualization version GIF version | ||
| Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimconst2.p | ⊢ Ⅎ𝑘𝜑 |
| xlimconst2.k | ⊢ Ⅎ𝑘𝐹 |
| xlimconst2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimconst2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| xlimconst2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| xlimconst2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xlimconst2.e | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) |
| Ref | Expression |
|---|---|
| xlimconst2 | ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimconst2.p | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | xlimconst2.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
| 3 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑘(ℤ≥‘𝑁) | |
| 4 | 2, 3 | nfres 5930 | . . 3 ⊢ Ⅎ𝑘(𝐹 ↾ (ℤ≥‘𝑁)) |
| 5 | xlimconst2.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | xlimconst2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 7 | 5, 6 | eluzelz2d 45450 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 8 | eqid 2731 | . . 3 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
| 9 | xlimconst2.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 10 | 9 | ffnd 6652 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 11 | 5, 6 | uzssd2 45454 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
| 12 | 10, 11 | fnssresd 6605 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁)) Fn (ℤ≥‘𝑁)) |
| 13 | xlimconst2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 14 | fvres 6841 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) | |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) |
| 16 | xlimconst2.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) | |
| 17 | 15, 16 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = 𝐴) |
| 18 | 1, 4, 7, 8, 12, 13, 17 | xlimconst 45862 | . 2 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴) |
| 19 | 5, 9 | fuzxrpmcn 45865 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| 20 | 19, 7 | xlimres 45858 | . 2 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴)) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 class class class wbr 5091 ↾ cres 5618 ⟶wf 6477 ‘cfv 6481 ℝ*cxr 11142 ℤ≥cuz 12729 ~~>*clsxlim 45855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-2o 8386 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fi 9295 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-neg 11344 df-z 12466 df-uz 12730 df-topgen 17344 df-ordt 17402 df-ps 18469 df-tsr 18470 df-top 22807 df-topon 22824 df-bases 22859 df-lm 23142 df-xlim 45856 |
| This theorem is referenced by: climxlim2lem 45882 |
| Copyright terms: Public domain | W3C validator |