Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimconst2 Structured version   Visualization version   GIF version

Theorem xlimconst2 43051
Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimconst2.p 𝑘𝜑
xlimconst2.k 𝑘𝐹
xlimconst2.z 𝑍 = (ℤ𝑀)
xlimconst2.f (𝜑𝐹:𝑍⟶ℝ*)
xlimconst2.n (𝜑𝑁𝑍)
xlimconst2.a (𝜑𝐴 ∈ ℝ*)
xlimconst2.e ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
xlimconst2 (𝜑𝐹~~>*𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝑀(𝑘)   𝑍(𝑘)

Proof of Theorem xlimconst2
StepHypRef Expression
1 xlimconst2.p . . 3 𝑘𝜑
2 xlimconst2.k . . . 4 𝑘𝐹
3 nfcv 2904 . . . 4 𝑘(ℤ𝑁)
42, 3nfres 5853 . . 3 𝑘(𝐹 ↾ (ℤ𝑁))
5 xlimconst2.z . . . 4 𝑍 = (ℤ𝑀)
6 xlimconst2.n . . . 4 (𝜑𝑁𝑍)
75, 6eluzelz2d 42626 . . 3 (𝜑𝑁 ∈ ℤ)
8 eqid 2737 . . 3 (ℤ𝑁) = (ℤ𝑁)
9 xlimconst2.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
109ffnd 6546 . . . 4 (𝜑𝐹 Fn 𝑍)
115, 6uzssd2 42630 . . . 4 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
1210, 11fnssresd 6501 . . 3 (𝜑 → (𝐹 ↾ (ℤ𝑁)) Fn (ℤ𝑁))
13 xlimconst2.a . . 3 (𝜑𝐴 ∈ ℝ*)
14 fvres 6736 . . . . 5 (𝑘 ∈ (ℤ𝑁) → ((𝐹 ↾ (ℤ𝑁))‘𝑘) = (𝐹𝑘))
1514adantl 485 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝐹 ↾ (ℤ𝑁))‘𝑘) = (𝐹𝑘))
16 xlimconst2.e . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = 𝐴)
1715, 16eqtrd 2777 . . 3 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝐹 ↾ (ℤ𝑁))‘𝑘) = 𝐴)
181, 4, 7, 8, 12, 13, 17xlimconst 43041 . 2 (𝜑 → (𝐹 ↾ (ℤ𝑁))~~>*𝐴)
195, 9fuzxrpmcn 43044 . . 3 (𝜑𝐹 ∈ (ℝ*pm ℂ))
2019, 7xlimres 43037 . 2 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑁))~~>*𝐴))
2118, 20mpbird 260 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wnf 1791  wcel 2110  wnfc 2884   class class class wbr 5053  cres 5553  wf 6376  cfv 6380  *cxr 10866  cuz 12438  ~~>*clsxlim 43034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-1o 8202  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-neg 11065  df-z 12177  df-uz 12439  df-topgen 16948  df-ordt 17006  df-ps 18072  df-tsr 18073  df-top 21791  df-topon 21808  df-bases 21843  df-lm 22126  df-xlim 43035
This theorem is referenced by:  climxlim2lem  43061
  Copyright terms: Public domain W3C validator