| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst2 | Structured version Visualization version GIF version | ||
| Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimconst2.p | ⊢ Ⅎ𝑘𝜑 |
| xlimconst2.k | ⊢ Ⅎ𝑘𝐹 |
| xlimconst2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimconst2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| xlimconst2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| xlimconst2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xlimconst2.e | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) |
| Ref | Expression |
|---|---|
| xlimconst2 | ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimconst2.p | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | xlimconst2.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
| 3 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑘(ℤ≥‘𝑁) | |
| 4 | 2, 3 | nfres 5934 | . . 3 ⊢ Ⅎ𝑘(𝐹 ↾ (ℤ≥‘𝑁)) |
| 5 | xlimconst2.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | xlimconst2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 7 | 5, 6 | eluzelz2d 45535 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 8 | eqid 2733 | . . 3 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
| 9 | xlimconst2.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 10 | 9 | ffnd 6657 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 11 | 5, 6 | uzssd2 45539 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
| 12 | 10, 11 | fnssresd 6610 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁)) Fn (ℤ≥‘𝑁)) |
| 13 | xlimconst2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 14 | fvres 6847 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) | |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) |
| 16 | xlimconst2.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) | |
| 17 | 15, 16 | eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = 𝐴) |
| 18 | 1, 4, 7, 8, 12, 13, 17 | xlimconst 45947 | . 2 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴) |
| 19 | 5, 9 | fuzxrpmcn 45950 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| 20 | 19, 7 | xlimres 45943 | . 2 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴)) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 class class class wbr 5093 ↾ cres 5621 ⟶wf 6482 ‘cfv 6486 ℝ*cxr 11152 ℤ≥cuz 12738 ~~>*clsxlim 45940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-1o 8391 df-2o 8392 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-neg 11354 df-z 12476 df-uz 12739 df-topgen 17349 df-ordt 17407 df-ps 18474 df-tsr 18475 df-top 22810 df-topon 22827 df-bases 22862 df-lm 23145 df-xlim 45941 |
| This theorem is referenced by: climxlim2lem 45967 |
| Copyright terms: Public domain | W3C validator |