Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimconst2 Structured version   Visualization version   GIF version

Theorem xlimconst2 43266
Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimconst2.p 𝑘𝜑
xlimconst2.k 𝑘𝐹
xlimconst2.z 𝑍 = (ℤ𝑀)
xlimconst2.f (𝜑𝐹:𝑍⟶ℝ*)
xlimconst2.n (𝜑𝑁𝑍)
xlimconst2.a (𝜑𝐴 ∈ ℝ*)
xlimconst2.e ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
xlimconst2 (𝜑𝐹~~>*𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)   𝑀(𝑘)   𝑍(𝑘)

Proof of Theorem xlimconst2
StepHypRef Expression
1 xlimconst2.p . . 3 𝑘𝜑
2 xlimconst2.k . . . 4 𝑘𝐹
3 nfcv 2906 . . . 4 𝑘(ℤ𝑁)
42, 3nfres 5882 . . 3 𝑘(𝐹 ↾ (ℤ𝑁))
5 xlimconst2.z . . . 4 𝑍 = (ℤ𝑀)
6 xlimconst2.n . . . 4 (𝜑𝑁𝑍)
75, 6eluzelz2d 42843 . . 3 (𝜑𝑁 ∈ ℤ)
8 eqid 2738 . . 3 (ℤ𝑁) = (ℤ𝑁)
9 xlimconst2.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
109ffnd 6585 . . . 4 (𝜑𝐹 Fn 𝑍)
115, 6uzssd2 42847 . . . 4 (𝜑 → (ℤ𝑁) ⊆ 𝑍)
1210, 11fnssresd 6540 . . 3 (𝜑 → (𝐹 ↾ (ℤ𝑁)) Fn (ℤ𝑁))
13 xlimconst2.a . . 3 (𝜑𝐴 ∈ ℝ*)
14 fvres 6775 . . . . 5 (𝑘 ∈ (ℤ𝑁) → ((𝐹 ↾ (ℤ𝑁))‘𝑘) = (𝐹𝑘))
1514adantl 481 . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝐹 ↾ (ℤ𝑁))‘𝑘) = (𝐹𝑘))
16 xlimconst2.e . . . 4 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) = 𝐴)
1715, 16eqtrd 2778 . . 3 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝐹 ↾ (ℤ𝑁))‘𝑘) = 𝐴)
181, 4, 7, 8, 12, 13, 17xlimconst 43256 . 2 (𝜑 → (𝐹 ↾ (ℤ𝑁))~~>*𝐴)
195, 9fuzxrpmcn 43259 . . 3 (𝜑𝐹 ∈ (ℝ*pm ℂ))
2019, 7xlimres 43252 . 2 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ𝑁))~~>*𝐴))
2118, 20mpbird 256 1 (𝜑𝐹~~>*𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886   class class class wbr 5070  cres 5582  wf 6414  cfv 6418  *cxr 10939  cuz 12511  ~~>*clsxlim 43249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-neg 11138  df-z 12250  df-uz 12512  df-topgen 17071  df-ordt 17129  df-ps 18199  df-tsr 18200  df-top 21951  df-topon 21968  df-bases 22004  df-lm 22288  df-xlim 43250
This theorem is referenced by:  climxlim2lem  43276
  Copyright terms: Public domain W3C validator