| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst2 | Structured version Visualization version GIF version | ||
| Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimconst2.p | ⊢ Ⅎ𝑘𝜑 |
| xlimconst2.k | ⊢ Ⅎ𝑘𝐹 |
| xlimconst2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimconst2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| xlimconst2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| xlimconst2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xlimconst2.e | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) |
| Ref | Expression |
|---|---|
| xlimconst2 | ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimconst2.p | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | xlimconst2.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
| 3 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑘(ℤ≥‘𝑁) | |
| 4 | 2, 3 | nfres 5968 | . . 3 ⊢ Ⅎ𝑘(𝐹 ↾ (ℤ≥‘𝑁)) |
| 5 | xlimconst2.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | xlimconst2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 7 | 5, 6 | eluzelz2d 45440 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 8 | eqid 2735 | . . 3 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
| 9 | xlimconst2.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 10 | 9 | ffnd 6707 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 11 | 5, 6 | uzssd2 45444 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
| 12 | 10, 11 | fnssresd 6662 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁)) Fn (ℤ≥‘𝑁)) |
| 13 | xlimconst2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 14 | fvres 6895 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) | |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) |
| 16 | xlimconst2.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) | |
| 17 | 15, 16 | eqtrd 2770 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = 𝐴) |
| 18 | 1, 4, 7, 8, 12, 13, 17 | xlimconst 45854 | . 2 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴) |
| 19 | 5, 9 | fuzxrpmcn 45857 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| 20 | 19, 7 | xlimres 45850 | . 2 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴)) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 class class class wbr 5119 ↾ cres 5656 ⟶wf 6527 ‘cfv 6531 ℝ*cxr 11268 ℤ≥cuz 12852 ~~>*clsxlim 45847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-1o 8480 df-2o 8481 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-neg 11469 df-z 12589 df-uz 12853 df-topgen 17457 df-ordt 17515 df-ps 18576 df-tsr 18577 df-top 22832 df-topon 22849 df-bases 22884 df-lm 23167 df-xlim 45848 |
| This theorem is referenced by: climxlim2lem 45874 |
| Copyright terms: Public domain | W3C validator |