![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst2 | Structured version Visualization version GIF version |
Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimconst2.p | β’ β²ππ |
xlimconst2.k | β’ β²ππΉ |
xlimconst2.z | β’ π = (β€β₯βπ) |
xlimconst2.f | β’ (π β πΉ:πβΆβ*) |
xlimconst2.n | β’ (π β π β π) |
xlimconst2.a | β’ (π β π΄ β β*) |
xlimconst2.e | β’ ((π β§ π β (β€β₯βπ)) β (πΉβπ) = π΄) |
Ref | Expression |
---|---|
xlimconst2 | β’ (π β πΉ~~>*π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xlimconst2.p | . . 3 β’ β²ππ | |
2 | xlimconst2.k | . . . 4 β’ β²ππΉ | |
3 | nfcv 2903 | . . . 4 β’ β²π(β€β₯βπ) | |
4 | 2, 3 | nfres 5983 | . . 3 β’ β²π(πΉ βΎ (β€β₯βπ)) |
5 | xlimconst2.z | . . . 4 β’ π = (β€β₯βπ) | |
6 | xlimconst2.n | . . . 4 β’ (π β π β π) | |
7 | 5, 6 | eluzelz2d 44113 | . . 3 β’ (π β π β β€) |
8 | eqid 2732 | . . 3 β’ (β€β₯βπ) = (β€β₯βπ) | |
9 | xlimconst2.f | . . . . 5 β’ (π β πΉ:πβΆβ*) | |
10 | 9 | ffnd 6718 | . . . 4 β’ (π β πΉ Fn π) |
11 | 5, 6 | uzssd2 44117 | . . . 4 β’ (π β (β€β₯βπ) β π) |
12 | 10, 11 | fnssresd 6674 | . . 3 β’ (π β (πΉ βΎ (β€β₯βπ)) Fn (β€β₯βπ)) |
13 | xlimconst2.a | . . 3 β’ (π β π΄ β β*) | |
14 | fvres 6910 | . . . . 5 β’ (π β (β€β₯βπ) β ((πΉ βΎ (β€β₯βπ))βπ) = (πΉβπ)) | |
15 | 14 | adantl 482 | . . . 4 β’ ((π β§ π β (β€β₯βπ)) β ((πΉ βΎ (β€β₯βπ))βπ) = (πΉβπ)) |
16 | xlimconst2.e | . . . 4 β’ ((π β§ π β (β€β₯βπ)) β (πΉβπ) = π΄) | |
17 | 15, 16 | eqtrd 2772 | . . 3 β’ ((π β§ π β (β€β₯βπ)) β ((πΉ βΎ (β€β₯βπ))βπ) = π΄) |
18 | 1, 4, 7, 8, 12, 13, 17 | xlimconst 44531 | . 2 β’ (π β (πΉ βΎ (β€β₯βπ))~~>*π΄) |
19 | 5, 9 | fuzxrpmcn 44534 | . . 3 β’ (π β πΉ β (β* βpm β)) |
20 | 19, 7 | xlimres 44527 | . 2 β’ (π β (πΉ~~>*π΄ β (πΉ βΎ (β€β₯βπ))~~>*π΄)) |
21 | 18, 20 | mpbird 256 | 1 β’ (π β πΉ~~>*π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β²wnf 1785 β wcel 2106 β²wnfc 2883 class class class wbr 5148 βΎ cres 5678 βΆwf 6539 βcfv 6543 β*cxr 11246 β€β₯cuz 12821 ~~>*clsxlim 44524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-pre-lttri 11183 ax-pre-lttrn 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-1o 8465 df-er 8702 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-neg 11446 df-z 12558 df-uz 12822 df-topgen 17388 df-ordt 17446 df-ps 18518 df-tsr 18519 df-top 22395 df-topon 22412 df-bases 22448 df-lm 22732 df-xlim 44525 |
This theorem is referenced by: climxlim2lem 44551 |
Copyright terms: Public domain | W3C validator |