| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimconst2 | Structured version Visualization version GIF version | ||
| Description: A sequence that eventually becomes constant, converges to its constant value (w.r.t. the standard topology on the extended reals). (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| xlimconst2.p | ⊢ Ⅎ𝑘𝜑 |
| xlimconst2.k | ⊢ Ⅎ𝑘𝐹 |
| xlimconst2.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| xlimconst2.f | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| xlimconst2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| xlimconst2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xlimconst2.e | ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) |
| Ref | Expression |
|---|---|
| xlimconst2 | ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlimconst2.p | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | xlimconst2.k | . . . 4 ⊢ Ⅎ𝑘𝐹 | |
| 3 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑘(ℤ≥‘𝑁) | |
| 4 | 2, 3 | nfres 5955 | . . 3 ⊢ Ⅎ𝑘(𝐹 ↾ (ℤ≥‘𝑁)) |
| 5 | xlimconst2.z | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 6 | xlimconst2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 7 | 5, 6 | eluzelz2d 45416 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 8 | eqid 2730 | . . 3 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
| 9 | xlimconst2.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) | |
| 10 | 9 | ffnd 6692 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝑍) |
| 11 | 5, 6 | uzssd2 45420 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
| 12 | 10, 11 | fnssresd 6645 | . . 3 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁)) Fn (ℤ≥‘𝑁)) |
| 13 | xlimconst2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 14 | fvres 6880 | . . . . 5 ⊢ (𝑘 ∈ (ℤ≥‘𝑁) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) | |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = (𝐹‘𝑘)) |
| 16 | xlimconst2.e | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → (𝐹‘𝑘) = 𝐴) | |
| 17 | 15, 16 | eqtrd 2765 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑁)) → ((𝐹 ↾ (ℤ≥‘𝑁))‘𝑘) = 𝐴) |
| 18 | 1, 4, 7, 8, 12, 13, 17 | xlimconst 45830 | . 2 ⊢ (𝜑 → (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴) |
| 19 | 5, 9 | fuzxrpmcn 45833 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (ℝ* ↑pm ℂ)) |
| 20 | 19, 7 | xlimres 45826 | . 2 ⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ↾ (ℤ≥‘𝑁))~~>*𝐴)) |
| 21 | 18, 20 | mpbird 257 | 1 ⊢ (𝜑 → 𝐹~~>*𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 class class class wbr 5110 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 ℝ*cxr 11214 ℤ≥cuz 12800 ~~>*clsxlim 45823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-1o 8437 df-2o 8438 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-z 12537 df-uz 12801 df-topgen 17413 df-ordt 17471 df-ps 18532 df-tsr 18533 df-top 22788 df-topon 22805 df-bases 22840 df-lm 23123 df-xlim 45824 |
| This theorem is referenced by: climxlim2lem 45850 |
| Copyright terms: Public domain | W3C validator |