| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssrescdmd | Structured version Visualization version GIF version | ||
| Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.) |
| Ref | Expression |
|---|---|
| fssrescdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fssrescdmd.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| fssrescdmd.d | ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) |
| Ref | Expression |
|---|---|
| fssrescdmd | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssrescdmd.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6657 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | fssrescdmd.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 4 | 2, 3 | fnssresd 6610 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) Fn 𝐶) |
| 5 | resima 5970 | . . . 4 ⊢ ((𝐹 ↾ 𝐶) “ 𝐶) = (𝐹 “ 𝐶) | |
| 6 | fssrescdmd.d | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) | |
| 7 | 5, 6 | eqsstrid 3976 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷) |
| 8 | 1 | ffund 6660 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
| 9 | 8 | funresd 6529 | . . . 4 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐶)) |
| 10 | 1 | fdmd 6666 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 11 | 3, 10 | sseqtrrd 3975 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ dom 𝐹) |
| 12 | ssdmres 5968 | . . . . . . . 8 ⊢ (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐶) = 𝐶) | |
| 13 | 12 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐶) = 𝐶)) |
| 14 | eqcom 2736 | . . . . . . 7 ⊢ (dom (𝐹 ↾ 𝐶) = 𝐶 ↔ 𝐶 = dom (𝐹 ↾ 𝐶)) | |
| 15 | 13, 14 | bitrdi 287 | . . . . . 6 ⊢ (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ 𝐶 = dom (𝐹 ↾ 𝐶))) |
| 16 | 11, 15 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝐶 = dom (𝐹 ↾ 𝐶)) |
| 17 | 16 | eqimssd 3994 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ dom (𝐹 ↾ 𝐶)) |
| 18 | funimass4 6891 | . . . 4 ⊢ ((Fun (𝐹 ↾ 𝐶) ∧ 𝐶 ⊆ dom (𝐹 ↾ 𝐶)) → (((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) | |
| 19 | 9, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) |
| 20 | 7, 19 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷) |
| 21 | ffnfv 7057 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐷 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) | |
| 22 | 4, 20, 21 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 dom cdm 5623 ↾ cres 5625 “ cima 5626 Fun wfun 6480 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: isubgruhgr 47852 |
| Copyright terms: Public domain | W3C validator |