![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssrescdmd | Structured version Visualization version GIF version |
Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.) |
Ref | Expression |
---|---|
fssrescdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fssrescdmd.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
fssrescdmd.d | ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) |
Ref | Expression |
---|---|
fssrescdmd | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssrescdmd.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6748 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fssrescdmd.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
4 | 2, 3 | fnssresd 6704 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) Fn 𝐶) |
5 | resima 6044 | . . . 4 ⊢ ((𝐹 ↾ 𝐶) “ 𝐶) = (𝐹 “ 𝐶) | |
6 | fssrescdmd.d | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) | |
7 | 5, 6 | eqsstrid 4057 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷) |
8 | 1 | ffund 6751 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
9 | 8 | funresd 6621 | . . . 4 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐶)) |
10 | 1 | fdmd 6757 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
11 | 3, 10 | sseqtrrd 4050 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ dom 𝐹) |
12 | ssdmres 6042 | . . . . . . . 8 ⊢ (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐶) = 𝐶) | |
13 | 12 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐶) = 𝐶)) |
14 | eqcom 2747 | . . . . . . 7 ⊢ (dom (𝐹 ↾ 𝐶) = 𝐶 ↔ 𝐶 = dom (𝐹 ↾ 𝐶)) | |
15 | 13, 14 | bitrdi 287 | . . . . . 6 ⊢ (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ 𝐶 = dom (𝐹 ↾ 𝐶))) |
16 | 11, 15 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝐶 = dom (𝐹 ↾ 𝐶)) |
17 | 16 | eqimssd 4065 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ dom (𝐹 ↾ 𝐶)) |
18 | funimass4 6986 | . . . 4 ⊢ ((Fun (𝐹 ↾ 𝐶) ∧ 𝐶 ⊆ dom (𝐹 ↾ 𝐶)) → (((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) | |
19 | 9, 17, 18 | syl2anc 583 | . . 3 ⊢ (𝜑 → (((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) |
20 | 7, 19 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷) |
21 | ffnfv 7153 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐷 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) | |
22 | 4, 20, 21 | sylanbrc 582 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 dom cdm 5700 ↾ cres 5702 “ cima 5703 Fun wfun 6567 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: isubgruhgr 47738 |
Copyright terms: Public domain | W3C validator |