| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssrescdmd | Structured version Visualization version GIF version | ||
| Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.) |
| Ref | Expression |
|---|---|
| fssrescdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fssrescdmd.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| fssrescdmd.d | ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) |
| Ref | Expression |
|---|---|
| fssrescdmd | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssrescdmd.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6692 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | fssrescdmd.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 4 | 2, 3 | fnssresd 6645 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) Fn 𝐶) |
| 5 | resima 5989 | . . . 4 ⊢ ((𝐹 ↾ 𝐶) “ 𝐶) = (𝐹 “ 𝐶) | |
| 6 | fssrescdmd.d | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) | |
| 7 | 5, 6 | eqsstrid 3988 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷) |
| 8 | 1 | ffund 6695 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
| 9 | 8 | funresd 6562 | . . . 4 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐶)) |
| 10 | 1 | fdmd 6701 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 11 | 3, 10 | sseqtrrd 3987 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ dom 𝐹) |
| 12 | ssdmres 5987 | . . . . . . . 8 ⊢ (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐶) = 𝐶) | |
| 13 | 12 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐶) = 𝐶)) |
| 14 | eqcom 2737 | . . . . . . 7 ⊢ (dom (𝐹 ↾ 𝐶) = 𝐶 ↔ 𝐶 = dom (𝐹 ↾ 𝐶)) | |
| 15 | 13, 14 | bitrdi 287 | . . . . . 6 ⊢ (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ 𝐶 = dom (𝐹 ↾ 𝐶))) |
| 16 | 11, 15 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝐶 = dom (𝐹 ↾ 𝐶)) |
| 17 | 16 | eqimssd 4006 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ dom (𝐹 ↾ 𝐶)) |
| 18 | funimass4 6928 | . . . 4 ⊢ ((Fun (𝐹 ↾ 𝐶) ∧ 𝐶 ⊆ dom (𝐹 ↾ 𝐶)) → (((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) | |
| 19 | 9, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) |
| 20 | 7, 19 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷) |
| 21 | ffnfv 7094 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐷 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) | |
| 22 | 4, 20, 21 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 dom cdm 5641 ↾ cres 5643 “ cima 5644 Fun wfun 6508 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 |
| This theorem is referenced by: isubgruhgr 47872 |
| Copyright terms: Public domain | W3C validator |