MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssrescdmd Structured version   Visualization version   GIF version

Theorem fssrescdmd 7064
Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.)
Hypotheses
Ref Expression
fssrescdmd.f (𝜑𝐹:𝐴𝐵)
fssrescdmd.c (𝜑𝐶𝐴)
fssrescdmd.d (𝜑 → (𝐹𝐶) ⊆ 𝐷)
Assertion
Ref Expression
fssrescdmd (𝜑 → (𝐹𝐶):𝐶𝐷)

Proof of Theorem fssrescdmd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fssrescdmd.f . . . 4 (𝜑𝐹:𝐴𝐵)
21ffnd 6657 . . 3 (𝜑𝐹 Fn 𝐴)
3 fssrescdmd.c . . 3 (𝜑𝐶𝐴)
42, 3fnssresd 6610 . 2 (𝜑 → (𝐹𝐶) Fn 𝐶)
5 resima 5970 . . . 4 ((𝐹𝐶) “ 𝐶) = (𝐹𝐶)
6 fssrescdmd.d . . . 4 (𝜑 → (𝐹𝐶) ⊆ 𝐷)
75, 6eqsstrid 3976 . . 3 (𝜑 → ((𝐹𝐶) “ 𝐶) ⊆ 𝐷)
81ffund 6660 . . . . 5 (𝜑 → Fun 𝐹)
98funresd 6529 . . . 4 (𝜑 → Fun (𝐹𝐶))
101fdmd 6666 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
113, 10sseqtrrd 3975 . . . . . 6 (𝜑𝐶 ⊆ dom 𝐹)
12 ssdmres 5968 . . . . . . . 8 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
1312a1i 11 . . . . . . 7 (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶))
14 eqcom 2736 . . . . . . 7 (dom (𝐹𝐶) = 𝐶𝐶 = dom (𝐹𝐶))
1513, 14bitrdi 287 . . . . . 6 (𝜑 → (𝐶 ⊆ dom 𝐹𝐶 = dom (𝐹𝐶)))
1611, 15mpbid 232 . . . . 5 (𝜑𝐶 = dom (𝐹𝐶))
1716eqimssd 3994 . . . 4 (𝜑𝐶 ⊆ dom (𝐹𝐶))
18 funimass4 6891 . . . 4 ((Fun (𝐹𝐶) ∧ 𝐶 ⊆ dom (𝐹𝐶)) → (((𝐹𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
199, 17, 18syl2anc 584 . . 3 (𝜑 → (((𝐹𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
207, 19mpbid 232 . 2 (𝜑 → ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷)
21 ffnfv 7057 . 2 ((𝐹𝐶):𝐶𝐷 ↔ ((𝐹𝐶) Fn 𝐶 ∧ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
224, 20, 21sylanbrc 583 1 (𝜑 → (𝐹𝐶):𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  wss 3905  dom cdm 5623  cres 5625  cima 5626  Fun wfun 6480   Fn wfn 6481  wf 6482  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494
This theorem is referenced by:  isubgruhgr  47852
  Copyright terms: Public domain W3C validator