![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fssrescdmd | Structured version Visualization version GIF version |
Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.) |
Ref | Expression |
---|---|
fssrescdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
fssrescdmd.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
fssrescdmd.d | ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) |
Ref | Expression |
---|---|
fssrescdmd | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fssrescdmd.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6738 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | fssrescdmd.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
4 | 2, 3 | fnssresd 6693 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) Fn 𝐶) |
5 | resima 6035 | . . . 4 ⊢ ((𝐹 ↾ 𝐶) “ 𝐶) = (𝐹 “ 𝐶) | |
6 | fssrescdmd.d | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) | |
7 | 5, 6 | eqsstrid 4044 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷) |
8 | 1 | ffund 6741 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
9 | 8 | funresd 6611 | . . . 4 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐶)) |
10 | 1 | fdmd 6747 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
11 | 3, 10 | sseqtrrd 4037 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ dom 𝐹) |
12 | ssdmres 6033 | . . . . . . . 8 ⊢ (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐶) = 𝐶) | |
13 | 12 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐶) = 𝐶)) |
14 | eqcom 2742 | . . . . . . 7 ⊢ (dom (𝐹 ↾ 𝐶) = 𝐶 ↔ 𝐶 = dom (𝐹 ↾ 𝐶)) | |
15 | 13, 14 | bitrdi 287 | . . . . . 6 ⊢ (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ 𝐶 = dom (𝐹 ↾ 𝐶))) |
16 | 11, 15 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝐶 = dom (𝐹 ↾ 𝐶)) |
17 | 16 | eqimssd 4052 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ dom (𝐹 ↾ 𝐶)) |
18 | funimass4 6973 | . . . 4 ⊢ ((Fun (𝐹 ↾ 𝐶) ∧ 𝐶 ⊆ dom (𝐹 ↾ 𝐶)) → (((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) | |
19 | 9, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) |
20 | 7, 19 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷) |
21 | ffnfv 7139 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐷 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) | |
22 | 4, 20, 21 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 dom cdm 5689 ↾ cres 5691 “ cima 5692 Fun wfun 6557 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 |
This theorem is referenced by: isubgruhgr 47792 |
Copyright terms: Public domain | W3C validator |