MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssrescdmd Structured version   Visualization version   GIF version

Theorem fssrescdmd 7101
Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.)
Hypotheses
Ref Expression
fssrescdmd.f (𝜑𝐹:𝐴𝐵)
fssrescdmd.c (𝜑𝐶𝐴)
fssrescdmd.d (𝜑 → (𝐹𝐶) ⊆ 𝐷)
Assertion
Ref Expression
fssrescdmd (𝜑 → (𝐹𝐶):𝐶𝐷)

Proof of Theorem fssrescdmd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fssrescdmd.f . . . 4 (𝜑𝐹:𝐴𝐵)
21ffnd 6692 . . 3 (𝜑𝐹 Fn 𝐴)
3 fssrescdmd.c . . 3 (𝜑𝐶𝐴)
42, 3fnssresd 6645 . 2 (𝜑 → (𝐹𝐶) Fn 𝐶)
5 resima 5989 . . . 4 ((𝐹𝐶) “ 𝐶) = (𝐹𝐶)
6 fssrescdmd.d . . . 4 (𝜑 → (𝐹𝐶) ⊆ 𝐷)
75, 6eqsstrid 3988 . . 3 (𝜑 → ((𝐹𝐶) “ 𝐶) ⊆ 𝐷)
81ffund 6695 . . . . 5 (𝜑 → Fun 𝐹)
98funresd 6562 . . . 4 (𝜑 → Fun (𝐹𝐶))
101fdmd 6701 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
113, 10sseqtrrd 3987 . . . . . 6 (𝜑𝐶 ⊆ dom 𝐹)
12 ssdmres 5987 . . . . . . . 8 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
1312a1i 11 . . . . . . 7 (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶))
14 eqcom 2737 . . . . . . 7 (dom (𝐹𝐶) = 𝐶𝐶 = dom (𝐹𝐶))
1513, 14bitrdi 287 . . . . . 6 (𝜑 → (𝐶 ⊆ dom 𝐹𝐶 = dom (𝐹𝐶)))
1611, 15mpbid 232 . . . . 5 (𝜑𝐶 = dom (𝐹𝐶))
1716eqimssd 4006 . . . 4 (𝜑𝐶 ⊆ dom (𝐹𝐶))
18 funimass4 6928 . . . 4 ((Fun (𝐹𝐶) ∧ 𝐶 ⊆ dom (𝐹𝐶)) → (((𝐹𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
199, 17, 18syl2anc 584 . . 3 (𝜑 → (((𝐹𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
207, 19mpbid 232 . 2 (𝜑 → ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷)
21 ffnfv 7094 . 2 ((𝐹𝐶):𝐶𝐷 ↔ ((𝐹𝐶) Fn 𝐶 ∧ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
224, 20, 21sylanbrc 583 1 (𝜑 → (𝐹𝐶):𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3045  wss 3917  dom cdm 5641  cres 5643  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522
This theorem is referenced by:  isubgruhgr  47872
  Copyright terms: Public domain W3C validator