MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssrescdmd Structured version   Visualization version   GIF version

Theorem fssrescdmd 7068
Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.)
Hypotheses
Ref Expression
fssrescdmd.f (𝜑𝐹:𝐴𝐵)
fssrescdmd.c (𝜑𝐶𝐴)
fssrescdmd.d (𝜑 → (𝐹𝐶) ⊆ 𝐷)
Assertion
Ref Expression
fssrescdmd (𝜑 → (𝐹𝐶):𝐶𝐷)

Proof of Theorem fssrescdmd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fssrescdmd.f . . . 4 (𝜑𝐹:𝐴𝐵)
21ffnd 6660 . . 3 (𝜑𝐹 Fn 𝐴)
3 fssrescdmd.c . . 3 (𝜑𝐶𝐴)
42, 3fnssresd 6613 . 2 (𝜑 → (𝐹𝐶) Fn 𝐶)
5 resima 5971 . . . 4 ((𝐹𝐶) “ 𝐶) = (𝐹𝐶)
6 fssrescdmd.d . . . 4 (𝜑 → (𝐹𝐶) ⊆ 𝐷)
75, 6eqsstrid 3970 . . 3 (𝜑 → ((𝐹𝐶) “ 𝐶) ⊆ 𝐷)
81ffund 6663 . . . . 5 (𝜑 → Fun 𝐹)
98funresd 6532 . . . 4 (𝜑 → Fun (𝐹𝐶))
101fdmd 6669 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
113, 10sseqtrrd 3969 . . . . . 6 (𝜑𝐶 ⊆ dom 𝐹)
12 ssdmres 5969 . . . . . . . 8 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
1312a1i 11 . . . . . . 7 (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶))
14 eqcom 2740 . . . . . . 7 (dom (𝐹𝐶) = 𝐶𝐶 = dom (𝐹𝐶))
1513, 14bitrdi 287 . . . . . 6 (𝜑 → (𝐶 ⊆ dom 𝐹𝐶 = dom (𝐹𝐶)))
1611, 15mpbid 232 . . . . 5 (𝜑𝐶 = dom (𝐹𝐶))
1716eqimssd 3988 . . . 4 (𝜑𝐶 ⊆ dom (𝐹𝐶))
18 funimass4 6895 . . . 4 ((Fun (𝐹𝐶) ∧ 𝐶 ⊆ dom (𝐹𝐶)) → (((𝐹𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
199, 17, 18syl2anc 584 . . 3 (𝜑 → (((𝐹𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
207, 19mpbid 232 . 2 (𝜑 → ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷)
21 ffnfv 7061 . 2 ((𝐹𝐶):𝐶𝐷 ↔ ((𝐹𝐶) Fn 𝐶 ∧ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
224, 20, 21sylanbrc 583 1 (𝜑 → (𝐹𝐶):𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wral 3049  wss 3899  dom cdm 5621  cres 5623  cima 5624  Fun wfun 6483   Fn wfn 6484  wf 6485  cfv 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497
This theorem is referenced by:  isubgruhgr  47982
  Copyright terms: Public domain W3C validator