MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssrescdmd Structured version   Visualization version   GIF version

Theorem fssrescdmd 7098
Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.)
Hypotheses
Ref Expression
fssrescdmd.f (𝜑𝐹:𝐴𝐵)
fssrescdmd.c (𝜑𝐶𝐴)
fssrescdmd.d (𝜑 → (𝐹𝐶) ⊆ 𝐷)
Assertion
Ref Expression
fssrescdmd (𝜑 → (𝐹𝐶):𝐶𝐷)

Proof of Theorem fssrescdmd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fssrescdmd.f . . . 4 (𝜑𝐹:𝐴𝐵)
21ffnd 6689 . . 3 (𝜑𝐹 Fn 𝐴)
3 fssrescdmd.c . . 3 (𝜑𝐶𝐴)
42, 3fnssresd 6642 . 2 (𝜑 → (𝐹𝐶) Fn 𝐶)
5 resima 5986 . . . 4 ((𝐹𝐶) “ 𝐶) = (𝐹𝐶)
6 fssrescdmd.d . . . 4 (𝜑 → (𝐹𝐶) ⊆ 𝐷)
75, 6eqsstrid 3985 . . 3 (𝜑 → ((𝐹𝐶) “ 𝐶) ⊆ 𝐷)
81ffund 6692 . . . . 5 (𝜑 → Fun 𝐹)
98funresd 6559 . . . 4 (𝜑 → Fun (𝐹𝐶))
101fdmd 6698 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
113, 10sseqtrrd 3984 . . . . . 6 (𝜑𝐶 ⊆ dom 𝐹)
12 ssdmres 5984 . . . . . . . 8 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
1312a1i 11 . . . . . . 7 (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶))
14 eqcom 2736 . . . . . . 7 (dom (𝐹𝐶) = 𝐶𝐶 = dom (𝐹𝐶))
1513, 14bitrdi 287 . . . . . 6 (𝜑 → (𝐶 ⊆ dom 𝐹𝐶 = dom (𝐹𝐶)))
1611, 15mpbid 232 . . . . 5 (𝜑𝐶 = dom (𝐹𝐶))
1716eqimssd 4003 . . . 4 (𝜑𝐶 ⊆ dom (𝐹𝐶))
18 funimass4 6925 . . . 4 ((Fun (𝐹𝐶) ∧ 𝐶 ⊆ dom (𝐹𝐶)) → (((𝐹𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
199, 17, 18syl2anc 584 . . 3 (𝜑 → (((𝐹𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
207, 19mpbid 232 . 2 (𝜑 → ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷)
21 ffnfv 7091 . 2 ((𝐹𝐶):𝐶𝐷 ↔ ((𝐹𝐶) Fn 𝐶 ∧ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
224, 20, 21sylanbrc 583 1 (𝜑 → (𝐹𝐶):𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  wss 3914  dom cdm 5638  cres 5640  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  isubgruhgr  47868
  Copyright terms: Public domain W3C validator