| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fssrescdmd | Structured version Visualization version GIF version | ||
| Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.) |
| Ref | Expression |
|---|---|
| fssrescdmd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| fssrescdmd.c | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| fssrescdmd.d | ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) |
| Ref | Expression |
|---|---|
| fssrescdmd | ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fssrescdmd.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6718 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | fssrescdmd.c | . . 3 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
| 4 | 2, 3 | fnssresd 6673 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) Fn 𝐶) |
| 5 | resima 6015 | . . . 4 ⊢ ((𝐹 ↾ 𝐶) “ 𝐶) = (𝐹 “ 𝐶) | |
| 6 | fssrescdmd.d | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐶) ⊆ 𝐷) | |
| 7 | 5, 6 | eqsstrid 4004 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷) |
| 8 | 1 | ffund 6721 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) |
| 9 | 8 | funresd 6590 | . . . 4 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐶)) |
| 10 | 1 | fdmd 6727 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 11 | 3, 10 | sseqtrrd 4003 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ dom 𝐹) |
| 12 | ssdmres 6013 | . . . . . . . 8 ⊢ (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐶) = 𝐶) | |
| 13 | 12 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐶) = 𝐶)) |
| 14 | eqcom 2741 | . . . . . . 7 ⊢ (dom (𝐹 ↾ 𝐶) = 𝐶 ↔ 𝐶 = dom (𝐹 ↾ 𝐶)) | |
| 15 | 13, 14 | bitrdi 287 | . . . . . 6 ⊢ (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ 𝐶 = dom (𝐹 ↾ 𝐶))) |
| 16 | 11, 15 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝐶 = dom (𝐹 ↾ 𝐶)) |
| 17 | 16 | eqimssd 4022 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ dom (𝐹 ↾ 𝐶)) |
| 18 | funimass4 6954 | . . . 4 ⊢ ((Fun (𝐹 ↾ 𝐶) ∧ 𝐶 ⊆ dom (𝐹 ↾ 𝐶)) → (((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) | |
| 19 | 9, 17, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐹 ↾ 𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) |
| 20 | 7, 19 | mpbid 232 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷) |
| 21 | ffnfv 7120 | . 2 ⊢ ((𝐹 ↾ 𝐶):𝐶⟶𝐷 ↔ ((𝐹 ↾ 𝐶) Fn 𝐶 ∧ ∀𝑥 ∈ 𝐶 ((𝐹 ↾ 𝐶)‘𝑥) ∈ 𝐷)) | |
| 22 | 4, 20, 21 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3933 dom cdm 5667 ↾ cres 5669 “ cima 5670 Fun wfun 6536 Fn wfn 6537 ⟶wf 6538 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 |
| This theorem is referenced by: isubgruhgr 47800 |
| Copyright terms: Public domain | W3C validator |