MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fssrescdmd Structured version   Visualization version   GIF version

Theorem fssrescdmd 7160
Description: Restriction of a function to a subclass of its domain as a function with domain and codomain. (Contributed by AV, 13-May-2025.)
Hypotheses
Ref Expression
fssrescdmd.f (𝜑𝐹:𝐴𝐵)
fssrescdmd.c (𝜑𝐶𝐴)
fssrescdmd.d (𝜑 → (𝐹𝐶) ⊆ 𝐷)
Assertion
Ref Expression
fssrescdmd (𝜑 → (𝐹𝐶):𝐶𝐷)

Proof of Theorem fssrescdmd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fssrescdmd.f . . . 4 (𝜑𝐹:𝐴𝐵)
21ffnd 6748 . . 3 (𝜑𝐹 Fn 𝐴)
3 fssrescdmd.c . . 3 (𝜑𝐶𝐴)
42, 3fnssresd 6704 . 2 (𝜑 → (𝐹𝐶) Fn 𝐶)
5 resima 6044 . . . 4 ((𝐹𝐶) “ 𝐶) = (𝐹𝐶)
6 fssrescdmd.d . . . 4 (𝜑 → (𝐹𝐶) ⊆ 𝐷)
75, 6eqsstrid 4057 . . 3 (𝜑 → ((𝐹𝐶) “ 𝐶) ⊆ 𝐷)
81ffund 6751 . . . . 5 (𝜑 → Fun 𝐹)
98funresd 6621 . . . 4 (𝜑 → Fun (𝐹𝐶))
101fdmd 6757 . . . . . . 7 (𝜑 → dom 𝐹 = 𝐴)
113, 10sseqtrrd 4050 . . . . . 6 (𝜑𝐶 ⊆ dom 𝐹)
12 ssdmres 6042 . . . . . . . 8 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
1312a1i 11 . . . . . . 7 (𝜑 → (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶))
14 eqcom 2747 . . . . . . 7 (dom (𝐹𝐶) = 𝐶𝐶 = dom (𝐹𝐶))
1513, 14bitrdi 287 . . . . . 6 (𝜑 → (𝐶 ⊆ dom 𝐹𝐶 = dom (𝐹𝐶)))
1611, 15mpbid 232 . . . . 5 (𝜑𝐶 = dom (𝐹𝐶))
1716eqimssd 4065 . . . 4 (𝜑𝐶 ⊆ dom (𝐹𝐶))
18 funimass4 6986 . . . 4 ((Fun (𝐹𝐶) ∧ 𝐶 ⊆ dom (𝐹𝐶)) → (((𝐹𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
199, 17, 18syl2anc 583 . . 3 (𝜑 → (((𝐹𝐶) “ 𝐶) ⊆ 𝐷 ↔ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
207, 19mpbid 232 . 2 (𝜑 → ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷)
21 ffnfv 7153 . 2 ((𝐹𝐶):𝐶𝐷 ↔ ((𝐹𝐶) Fn 𝐶 ∧ ∀𝑥𝐶 ((𝐹𝐶)‘𝑥) ∈ 𝐷))
224, 20, 21sylanbrc 582 1 (𝜑 → (𝐹𝐶):𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wral 3067  wss 3976  dom cdm 5700  cres 5702  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  isubgruhgr  47738
  Copyright terms: Public domain W3C validator