![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pfxccat1 | Structured version Visualization version GIF version |
Description: Recover the left half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by AV, 6-May-2020.) |
Ref | Expression |
---|---|
pfxccat1 | ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatcl 14609 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) | |
2 | lencl 14568 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
3 | lencl 14568 | . . . . . 6 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0) | |
4 | 2, 3 | anim12i 613 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0)) |
5 | nn0fz0 13662 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆))) | |
6 | 2, 5 | sylib 218 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
8 | elfz0add 13663 | . . . . 5 ⊢ (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))) | |
9 | 4, 7, 8 | sylc 65 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇)))) |
10 | ccatlen 14610 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇))) | |
11 | 10 | oveq2d 7447 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (0...(♯‘(𝑆 ++ 𝑇))) = (0...((♯‘𝑆) + (♯‘𝑇)))) |
12 | 9, 11 | eleqtrrd 2842 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) |
13 | pfxres 14714 | . . 3 ⊢ (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))) | |
14 | 1, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))) |
15 | ccatvalfn 14616 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
16 | 2 | nn0zd 12637 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ) |
17 | 16 | uzidd 12892 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ≥‘(♯‘𝑆))) |
18 | uzaddcl 12944 | . . . . . 6 ⊢ (((♯‘𝑆) ∈ (ℤ≥‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ≥‘(♯‘𝑆))) | |
19 | 17, 3, 18 | syl2an 596 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ≥‘(♯‘𝑆))) |
20 | fzoss2 13724 | . . . . 5 ⊢ (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ≥‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
22 | 15, 21 | fnssresd 6693 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))) Fn (0..^(♯‘𝑆))) |
23 | wrdfn 14563 | . . . 4 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆 Fn (0..^(♯‘𝑆))) | |
24 | 23 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → 𝑆 Fn (0..^(♯‘𝑆))) |
25 | fvres 6926 | . . . . 5 ⊢ (𝑘 ∈ (0..^(♯‘𝑆)) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = ((𝑆 ++ 𝑇)‘𝑘)) | |
26 | 25 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = ((𝑆 ++ 𝑇)‘𝑘)) |
27 | ccatval1 14612 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑘) = (𝑆‘𝑘)) | |
28 | 27 | 3expa 1117 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑘) = (𝑆‘𝑘)) |
29 | 26, 28 | eqtrd 2775 | . . 3 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = (𝑆‘𝑘)) |
30 | 22, 24, 29 | eqfnfvd 7054 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))) = 𝑆) |
31 | 14, 30 | eqtrd 2775 | 1 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ↾ cres 5691 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 0cc0 11153 + caddc 11156 ℕ0cn0 12524 ℤ≥cuz 12876 ...cfz 13544 ..^cfzo 13691 ♯chash 14366 Word cword 14549 ++ cconcat 14605 prefix cpfx 14705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-substr 14676 df-pfx 14706 |
This theorem is referenced by: ccatopth 14751 reuccatpfxs1 14782 wwlksnextbi 29924 wwlksnextsurj 29930 clwwlkfo 30079 ccatws1f1olast 32922 gsumwrd2dccatlem 33052 ccatcan2d 42271 |
Copyright terms: Public domain | W3C validator |