MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccat1 Structured version   Visualization version   GIF version

Theorem pfxccat1 14694
Description: Recover the left half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by AV, 6-May-2020.)
Assertion
Ref Expression
pfxccat1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆)

Proof of Theorem pfxccat1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 ccatcl 14566 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵)
2 lencl 14525 . . . . . 6 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0)
3 lencl 14525 . . . . . 6 (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0)
42, 3anim12i 611 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0))
5 nn0fz0 13641 . . . . . . 7 ((♯‘𝑆) ∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆)))
62, 5sylib 217 . . . . . 6 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
76adantr 479 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
8 elfz0add 13642 . . . . 5 (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇)))))
94, 7, 8sylc 65 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))
10 ccatlen 14567 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇)))
1110oveq2d 7442 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0...(♯‘(𝑆 ++ 𝑇))) = (0...((♯‘𝑆) + (♯‘𝑇))))
129, 11eleqtrrd 2832 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...(♯‘(𝑆 ++ 𝑇))))
13 pfxres 14671 . . 3 (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))))
141, 12, 13syl2anc 582 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))))
15 ccatvalfn 14573 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇))))
162nn0zd 12624 . . . . . . 7 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ)
1716uzidd 12878 . . . . . 6 (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)))
18 uzaddcl 12928 . . . . . 6 (((♯‘𝑆) ∈ (ℤ‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
1917, 3, 18syl2an 594 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)))
20 fzoss2 13702 . . . . 5 (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
2119, 20syl 17 . . . 4 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇))))
2215, 21fnssresd 6684 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))) Fn (0..^(♯‘𝑆)))
23 wrdfn 14520 . . . 4 (𝑆 ∈ Word 𝐵𝑆 Fn (0..^(♯‘𝑆)))
2423adantr 479 . . 3 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → 𝑆 Fn (0..^(♯‘𝑆)))
25 fvres 6921 . . . . 5 (𝑘 ∈ (0..^(♯‘𝑆)) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = ((𝑆 ++ 𝑇)‘𝑘))
2625adantl 480 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = ((𝑆 ++ 𝑇)‘𝑘))
27 ccatval1 14569 . . . . 5 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵𝑘 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑘) = (𝑆𝑘))
28273expa 1115 . . . 4 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑘) = (𝑆𝑘))
2926, 28eqtrd 2768 . . 3 (((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = (𝑆𝑘))
3022, 24, 29eqfnfvd 7048 . 2 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))) = 𝑆)
3114, 30eqtrd 2768 1 ((𝑆 ∈ Word 𝐵𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wss 3949  cres 5684   Fn wfn 6548  cfv 6553  (class class class)co 7426  0cc0 11148   + caddc 11151  0cn0 12512  cuz 12862  ...cfz 13526  ..^cfzo 13669  chash 14331  Word cword 14506   ++ cconcat 14562   prefix cpfx 14662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-n0 12513  df-z 12599  df-uz 12863  df-fz 13527  df-fzo 13670  df-hash 14332  df-word 14507  df-concat 14563  df-substr 14633  df-pfx 14663
This theorem is referenced by:  ccatopth  14708  reuccatpfxs1  14739  wwlksnextbi  29733  wwlksnextsurj  29739  clwwlkfo  29888  ccatcan2d  41775
  Copyright terms: Public domain W3C validator