Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pfxccat1 | Structured version Visualization version GIF version |
Description: Recover the left half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by AV, 6-May-2020.) |
Ref | Expression |
---|---|
pfxccat1 | ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatcl 14286 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) | |
2 | lencl 14245 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
3 | lencl 14245 | . . . . . 6 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0) | |
4 | 2, 3 | anim12i 613 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0)) |
5 | nn0fz0 13363 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆))) | |
6 | 2, 5 | sylib 217 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) |
8 | elfz0add 13364 | . . . . 5 ⊢ (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))) | |
9 | 4, 7, 8 | sylc 65 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇)))) |
10 | ccatlen 14287 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇))) | |
11 | 10 | oveq2d 7300 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (0...(♯‘(𝑆 ++ 𝑇))) = (0...((♯‘𝑆) + (♯‘𝑇)))) |
12 | 9, 11 | eleqtrrd 2843 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) |
13 | pfxres 14401 | . . 3 ⊢ (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))) | |
14 | 1, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))) |
15 | ccatvalfn 14295 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
16 | 2 | nn0zd 12433 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ) |
17 | 16 | uzidd 12607 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ≥‘(♯‘𝑆))) |
18 | uzaddcl 12653 | . . . . . 6 ⊢ (((♯‘𝑆) ∈ (ℤ≥‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ≥‘(♯‘𝑆))) | |
19 | 17, 3, 18 | syl2an 596 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ≥‘(♯‘𝑆))) |
20 | fzoss2 13424 | . . . . 5 ⊢ (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ≥‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
22 | 15, 21 | fnssresd 6565 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))) Fn (0..^(♯‘𝑆))) |
23 | wrdfn 14240 | . . . 4 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆 Fn (0..^(♯‘𝑆))) | |
24 | 23 | adantr 481 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → 𝑆 Fn (0..^(♯‘𝑆))) |
25 | fvres 6802 | . . . . 5 ⊢ (𝑘 ∈ (0..^(♯‘𝑆)) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = ((𝑆 ++ 𝑇)‘𝑘)) | |
26 | 25 | adantl 482 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = ((𝑆 ++ 𝑇)‘𝑘)) |
27 | ccatval1 14290 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑘) = (𝑆‘𝑘)) | |
28 | 27 | 3expa 1117 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑘) = (𝑆‘𝑘)) |
29 | 26, 28 | eqtrd 2779 | . . 3 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = (𝑆‘𝑘)) |
30 | 22, 24, 29 | eqfnfvd 6921 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))) = 𝑆) |
31 | 14, 30 | eqtrd 2779 | 1 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 ↾ cres 5592 Fn wfn 6432 ‘cfv 6437 (class class class)co 7284 0cc0 10880 + caddc 10883 ℕ0cn0 12242 ℤ≥cuz 12591 ...cfz 13248 ..^cfzo 13391 ♯chash 14053 Word cword 14226 ++ cconcat 14282 prefix cpfx 14392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-nn 11983 df-n0 12243 df-z 12329 df-uz 12592 df-fz 13249 df-fzo 13392 df-hash 14054 df-word 14227 df-concat 14283 df-substr 14363 df-pfx 14393 |
This theorem is referenced by: ccatopth 14438 reuccatpfxs1 14469 wwlksnextbi 28268 wwlksnextsurj 28274 clwwlkfo 28423 ccatcan2d 40226 |
Copyright terms: Public domain | W3C validator |