|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pfxccat1 | Structured version Visualization version GIF version | ||
| Description: Recover the left half of a concatenated word. (Contributed by Mario Carneiro, 27-Sep-2015.) (Revised by AV, 6-May-2020.) | 
| Ref | Expression | 
|---|---|
| pfxccat1 | ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ccatcl 14613 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) ∈ Word 𝐵) | |
| 2 | lencl 14572 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℕ0) | |
| 3 | lencl 14572 | . . . . . 6 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0) | |
| 4 | 2, 3 | anim12i 613 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0)) | 
| 5 | nn0fz0 13666 | . . . . . . 7 ⊢ ((♯‘𝑆) ∈ ℕ0 ↔ (♯‘𝑆) ∈ (0...(♯‘𝑆))) | |
| 6 | 2, 5 | sylib 218 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (0...(♯‘𝑆))) | 
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...(♯‘𝑆))) | 
| 8 | elfz0add 13667 | . . . . 5 ⊢ (((♯‘𝑆) ∈ ℕ0 ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇))))) | |
| 9 | 4, 7, 8 | sylc 65 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...((♯‘𝑆) + (♯‘𝑇)))) | 
| 10 | ccatlen 14614 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘(𝑆 ++ 𝑇)) = ((♯‘𝑆) + (♯‘𝑇))) | |
| 11 | 10 | oveq2d 7448 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (0...(♯‘(𝑆 ++ 𝑇))) = (0...((♯‘𝑆) + (♯‘𝑇)))) | 
| 12 | 9, 11 | eleqtrrd 2843 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (♯‘𝑆) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) | 
| 13 | pfxres 14718 | . . 3 ⊢ (((𝑆 ++ 𝑇) ∈ Word 𝐵 ∧ (♯‘𝑆) ∈ (0...(♯‘(𝑆 ++ 𝑇)))) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))) | |
| 14 | 1, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))) | 
| 15 | ccatvalfn 14620 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) Fn (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
| 16 | 2 | nn0zd 12641 | . . . . . . 7 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ ℤ) | 
| 17 | 16 | uzidd 12895 | . . . . . 6 ⊢ (𝑆 ∈ Word 𝐵 → (♯‘𝑆) ∈ (ℤ≥‘(♯‘𝑆))) | 
| 18 | uzaddcl 12947 | . . . . . 6 ⊢ (((♯‘𝑆) ∈ (ℤ≥‘(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ≥‘(♯‘𝑆))) | |
| 19 | 17, 3, 18 | syl2an 596 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ≥‘(♯‘𝑆))) | 
| 20 | fzoss2 13728 | . . . . 5 ⊢ (((♯‘𝑆) + (♯‘𝑇)) ∈ (ℤ≥‘(♯‘𝑆)) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
| 21 | 19, 20 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (0..^(♯‘𝑆)) ⊆ (0..^((♯‘𝑆) + (♯‘𝑇)))) | 
| 22 | 15, 21 | fnssresd 6691 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))) Fn (0..^(♯‘𝑆))) | 
| 23 | wrdfn 14567 | . . . 4 ⊢ (𝑆 ∈ Word 𝐵 → 𝑆 Fn (0..^(♯‘𝑆))) | |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → 𝑆 Fn (0..^(♯‘𝑆))) | 
| 25 | fvres 6924 | . . . . 5 ⊢ (𝑘 ∈ (0..^(♯‘𝑆)) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = ((𝑆 ++ 𝑇)‘𝑘)) | |
| 26 | 25 | adantl 481 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = ((𝑆 ++ 𝑇)‘𝑘)) | 
| 27 | ccatval1 14616 | . . . . 5 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑘) = (𝑆‘𝑘)) | |
| 28 | 27 | 3expa 1118 | . . . 4 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝑘) = (𝑆‘𝑘)) | 
| 29 | 26, 28 | eqtrd 2776 | . . 3 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) ∧ 𝑘 ∈ (0..^(♯‘𝑆))) → (((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆)))‘𝑘) = (𝑆‘𝑘)) | 
| 30 | 22, 24, 29 | eqfnfvd 7053 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) ↾ (0..^(♯‘𝑆))) = 𝑆) | 
| 31 | 14, 30 | eqtrd 2776 | 1 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → ((𝑆 ++ 𝑇) prefix (♯‘𝑆)) = 𝑆) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ↾ cres 5686 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 0cc0 11156 + caddc 11159 ℕ0cn0 12528 ℤ≥cuz 12879 ...cfz 13548 ..^cfzo 13695 ♯chash 14370 Word cword 14553 ++ cconcat 14609 prefix cpfx 14709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-fzo 13696 df-hash 14371 df-word 14554 df-concat 14610 df-substr 14680 df-pfx 14710 | 
| This theorem is referenced by: ccatopth 14755 reuccatpfxs1 14786 wwlksnextbi 29915 wwlksnextsurj 29921 clwwlkfo 30070 ccatws1f1olast 32938 gsumwrd2dccatlem 33070 ccatcan2d 42292 | 
| Copyright terms: Public domain | W3C validator |