Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1gsumz Structured version   Visualization version   GIF version

Theorem ply1gsumz 33101
Description: If a polynomial given as a sum of scaled monomials by factors 𝐴 is the zero polynomial, then all factors 𝐴 are zero. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
ply1gsumz.p 𝑃 = (Poly1𝑅)
ply1gsumz.b 𝐵 = (Base‘𝑅)
ply1gsumz.n (𝜑𝑁 ∈ ℕ0)
ply1gsumz.r (𝜑𝑅 ∈ Ring)
ply1gsumz.f 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
ply1gsumz.1 0 = (0g𝑅)
ply1gsumz.z 𝑍 = (0g𝑃)
ply1gsumz.a (𝜑𝐴:(0..^𝑁)⟶𝐵)
ply1gsumz.s (𝜑 → (𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)) = 𝑍)
Assertion
Ref Expression
ply1gsumz (𝜑𝐴 = ((0..^𝑁) × { 0 }))
Distinct variable groups:   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑛)   𝐹(𝑛)   0 (𝑛)   𝑍(𝑛)

Proof of Theorem ply1gsumz
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ply1gsumz.a . . . . 5 (𝜑𝐴:(0..^𝑁)⟶𝐵)
21ffnd 6708 . . . 4 (𝜑𝐴 Fn (0..^𝑁))
3 ply1gsumz.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ply1gsumz.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
54ply1ring 22080 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
6 eqid 2724 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
7 ply1gsumz.z . . . . . . . . 9 𝑍 = (0g𝑃)
86, 7ring0cl 20151 . . . . . . . 8 (𝑃 ∈ Ring → 𝑍 ∈ (Base‘𝑃))
93, 5, 83syl 18 . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝑃))
10 eqid 2724 . . . . . . . 8 (coe1𝑍) = (coe1𝑍)
11 ply1gsumz.b . . . . . . . 8 𝐵 = (Base‘𝑅)
1210, 6, 4, 11coe1f 22044 . . . . . . 7 (𝑍 ∈ (Base‘𝑃) → (coe1𝑍):ℕ0𝐵)
139, 12syl 17 . . . . . 6 (𝜑 → (coe1𝑍):ℕ0𝐵)
1413ffnd 6708 . . . . 5 (𝜑 → (coe1𝑍) Fn ℕ0)
15 fzo0ssnn0 13709 . . . . . 6 (0..^𝑁) ⊆ ℕ0
1615a1i 11 . . . . 5 (𝜑 → (0..^𝑁) ⊆ ℕ0)
1714, 16fnssresd 6664 . . . 4 (𝜑 → ((coe1𝑍) ↾ (0..^𝑁)) Fn (0..^𝑁))
18 simpr 484 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁))
1918fvresd 6901 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → (((coe1𝑍) ↾ (0..^𝑁))‘𝑗) = ((coe1𝑍)‘𝑗))
20 elfzonn0 13673 . . . . . 6 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℕ0)
21 ply1gsumz.s . . . . . . . . 9 (𝜑 → (𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)) = 𝑍)
2221, 9eqeltrd 2825 . . . . . . . 8 (𝜑 → (𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)) ∈ (Base‘𝑃))
23 eqid 2724 . . . . . . . . . 10 (coe1‘(𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹))) = (coe1‘(𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)))
244, 6, 23, 10ply1coe1eq 22132 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)) ∈ (Base‘𝑃) ∧ 𝑍 ∈ (Base‘𝑃)) → (∀𝑗 ∈ ℕ0 ((coe1‘(𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)))‘𝑗) = ((coe1𝑍)‘𝑗) ↔ (𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)) = 𝑍))
2524biimpar 477 . . . . . . . 8 (((𝑅 ∈ Ring ∧ (𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)) ∈ (Base‘𝑃) ∧ 𝑍 ∈ (Base‘𝑃)) ∧ (𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)) = 𝑍) → ∀𝑗 ∈ ℕ0 ((coe1‘(𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)))‘𝑗) = ((coe1𝑍)‘𝑗))
263, 22, 9, 21, 25syl31anc 1370 . . . . . . 7 (𝜑 → ∀𝑗 ∈ ℕ0 ((coe1‘(𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)))‘𝑗) = ((coe1𝑍)‘𝑗))
2726r19.21bi 3240 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → ((coe1‘(𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)))‘𝑗) = ((coe1𝑍)‘𝑗))
2820, 27sylan2 592 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → ((coe1‘(𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)))‘𝑗) = ((coe1𝑍)‘𝑗))
292adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴 Fn (0..^𝑁))
30 nfv 1909 . . . . . . . . . . . 12 𝑛𝜑
31 ovexd 7436 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ V)
32 ply1gsumz.f . . . . . . . . . . . 12 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)))
3330, 31, 32fnmptd 6681 . . . . . . . . . . 11 (𝜑𝐹 Fn (0..^𝑁))
3433adantr 480 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹 Fn (0..^𝑁))
35 ovexd 7436 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁)) → (0..^𝑁) ∈ V)
36 inidm 4210 . . . . . . . . . 10 ((0..^𝑁) ∩ (0..^𝑁)) = (0..^𝑁)
37 eqidd 2725 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝐴𝑖) = (𝐴𝑖))
38 oveq1 7408 . . . . . . . . . . 11 (𝑛 = 𝑖 → (𝑛(.g‘(mulGrp‘𝑃))(var1𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))
39 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^𝑁))
40 ovexd 7436 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ V)
4132, 38, 39, 40fvmptd3 7011 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝐹𝑖) = (𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))
4229, 34, 35, 35, 36, 37, 41offval 7672 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴f ( ·𝑠𝑃)𝐹) = (𝑖 ∈ (0..^𝑁) ↦ ((𝐴𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))))
4342oveq2d 7417 . . . . . . . 8 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)) = (𝑃 Σg (𝑖 ∈ (0..^𝑁) ↦ ((𝐴𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))
4443fveq2d 6885 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → (coe1‘(𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹))) = (coe1‘(𝑃 Σg (𝑖 ∈ (0..^𝑁) ↦ ((𝐴𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅)))))))
4544fveq1d 6883 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → ((coe1‘(𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)))‘𝑗) = ((coe1‘(𝑃 Σg (𝑖 ∈ (0..^𝑁) ↦ ((𝐴𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))‘𝑗))
46 eqid 2724 . . . . . . 7 (var1𝑅) = (var1𝑅)
47 eqid 2724 . . . . . . 7 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
483adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑅 ∈ Ring)
49 eqid 2724 . . . . . . 7 ( ·𝑠𝑃) = ( ·𝑠𝑃)
50 ply1gsumz.1 . . . . . . 7 0 = (0g𝑅)
511adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐴:(0..^𝑁)⟶𝐵)
5251ffvelcdmda 7076 . . . . . . . 8 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝐴𝑖) ∈ 𝐵)
5352ralrimiva 3138 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → ∀𝑖 ∈ (0..^𝑁)(𝐴𝑖) ∈ 𝐵)
54 ply1gsumz.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
5554adantr 480 . . . . . . 7 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
56 fveq2 6881 . . . . . . 7 (𝑖 = 𝑗 → (𝐴𝑖) = (𝐴𝑗))
574, 6, 46, 47, 48, 11, 49, 50, 53, 18, 55, 56gsummoncoe1fzo 33100 . . . . . 6 ((𝜑𝑗 ∈ (0..^𝑁)) → ((coe1‘(𝑃 Σg (𝑖 ∈ (0..^𝑁) ↦ ((𝐴𝑖)( ·𝑠𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1𝑅))))))‘𝑗) = (𝐴𝑗))
5845, 57eqtrd 2764 . . . . 5 ((𝜑𝑗 ∈ (0..^𝑁)) → ((coe1‘(𝑃 Σg (𝐴f ( ·𝑠𝑃)𝐹)))‘𝑗) = (𝐴𝑗))
5919, 28, 583eqtr2rd 2771 . . . 4 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴𝑗) = (((coe1𝑍) ↾ (0..^𝑁))‘𝑗))
602, 17, 59eqfnfvd 7025 . . 3 (𝜑𝐴 = ((coe1𝑍) ↾ (0..^𝑁)))
614, 7, 50coe1z 22095 . . . . 5 (𝑅 ∈ Ring → (coe1𝑍) = (ℕ0 × { 0 }))
623, 61syl 17 . . . 4 (𝜑 → (coe1𝑍) = (ℕ0 × { 0 }))
6362reseq1d 5970 . . 3 (𝜑 → ((coe1𝑍) ↾ (0..^𝑁)) = ((ℕ0 × { 0 }) ↾ (0..^𝑁)))
6460, 63eqtrd 2764 . 2 (𝜑𝐴 = ((ℕ0 × { 0 }) ↾ (0..^𝑁)))
65 xpssres 6008 . . 3 ((0..^𝑁) ⊆ ℕ0 → ((ℕ0 × { 0 }) ↾ (0..^𝑁)) = ((0..^𝑁) × { 0 }))
6615, 65ax-mp 5 . 2 ((ℕ0 × { 0 }) ↾ (0..^𝑁)) = ((0..^𝑁) × { 0 })
6764, 66eqtrdi 2780 1 (𝜑𝐴 = ((0..^𝑁) × { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  Vcvv 3466  wss 3940  {csn 4620  cmpt 5221   × cxp 5664  cres 5668   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7401  f cof 7661  0cc0 11105  0cn0 12468  ..^cfzo 13623  Basecbs 17140   ·𝑠 cvsca 17197  0gc0g 17381   Σg cgsu 17382  .gcmg 18982  mulGrpcmgp 20024  Ringcrg 20123  var1cv1 22009  Poly1cpl1 22010  coe1cco1 22011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-ofr 7664  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-sup 9432  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-fzo 13624  df-seq 13963  df-hash 14287  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-hom 17217  df-cco 17218  df-0g 17383  df-gsum 17384  df-prds 17389  df-pws 17391  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-mhm 18700  df-submnd 18701  df-grp 18853  df-minusg 18854  df-sbg 18855  df-mulg 18983  df-subg 19035  df-ghm 19124  df-cntz 19218  df-cmn 19687  df-abl 19688  df-mgp 20025  df-rng 20043  df-ur 20072  df-srg 20077  df-ring 20125  df-subrng 20431  df-subrg 20456  df-lmod 20693  df-lss 20764  df-psr 21762  df-mvr 21763  df-mpl 21764  df-opsr 21766  df-psr1 22013  df-vr1 22014  df-ply1 22015  df-coe1 22016
This theorem is referenced by:  ply1degltdimlem  33152
  Copyright terms: Public domain W3C validator