| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ply1gsumz.a | . . . . 5
⊢ (𝜑 → 𝐴:(0..^𝑁)⟶𝐵) | 
| 2 | 1 | ffnd 6737 | . . . 4
⊢ (𝜑 → 𝐴 Fn (0..^𝑁)) | 
| 3 |  | ply1gsumz.r | . . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 4 |  | ply1gsumz.p | . . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝑅) | 
| 5 | 4 | ply1ring 22249 | . . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 6 |  | eqid 2737 | . . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 7 |  | ply1gsumz.z | . . . . . . . . 9
⊢ 𝑍 = (0g‘𝑃) | 
| 8 | 6, 7 | ring0cl 20264 | . . . . . . . 8
⊢ (𝑃 ∈ Ring → 𝑍 ∈ (Base‘𝑃)) | 
| 9 | 3, 5, 8 | 3syl 18 | . . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (Base‘𝑃)) | 
| 10 |  | eqid 2737 | . . . . . . . 8
⊢
(coe1‘𝑍) = (coe1‘𝑍) | 
| 11 |  | ply1gsumz.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) | 
| 12 | 10, 6, 4, 11 | coe1f 22213 | . . . . . . 7
⊢ (𝑍 ∈ (Base‘𝑃) →
(coe1‘𝑍):ℕ0⟶𝐵) | 
| 13 | 9, 12 | syl 17 | . . . . . 6
⊢ (𝜑 →
(coe1‘𝑍):ℕ0⟶𝐵) | 
| 14 | 13 | ffnd 6737 | . . . . 5
⊢ (𝜑 →
(coe1‘𝑍)
Fn ℕ0) | 
| 15 |  | fzo0ssnn0 13785 | . . . . . 6
⊢
(0..^𝑁) ⊆
ℕ0 | 
| 16 | 15 | a1i 11 | . . . . 5
⊢ (𝜑 → (0..^𝑁) ⊆
ℕ0) | 
| 17 | 14, 16 | fnssresd 6692 | . . . 4
⊢ (𝜑 →
((coe1‘𝑍)
↾ (0..^𝑁)) Fn
(0..^𝑁)) | 
| 18 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0..^𝑁)) | 
| 19 | 18 | fvresd 6926 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((coe1‘𝑍) ↾ (0..^𝑁))‘𝑗) = ((coe1‘𝑍)‘𝑗)) | 
| 20 |  | elfzonn0 13747 | . . . . . 6
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℕ0) | 
| 21 |  | ply1gsumz.s | . . . . . . . . 9
⊢ (𝜑 → (𝑃 Σg (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)) = 𝑍) | 
| 22 | 21, 9 | eqeltrd 2841 | . . . . . . . 8
⊢ (𝜑 → (𝑃 Σg (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)) ∈ (Base‘𝑃)) | 
| 23 |  | eqid 2737 | . . . . . . . . . 10
⊢
(coe1‘(𝑃 Σg (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹))) = (coe1‘(𝑃 Σg
(𝐴 ∘f (
·𝑠 ‘𝑃)𝐹))) | 
| 24 | 4, 6, 23, 10 | ply1coe1eq 22304 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑃 Σg
(𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)) ∈ (Base‘𝑃) ∧ 𝑍 ∈ (Base‘𝑃)) → (∀𝑗 ∈ ℕ0
((coe1‘(𝑃
Σg (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)))‘𝑗) = ((coe1‘𝑍)‘𝑗) ↔ (𝑃 Σg (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)) = 𝑍)) | 
| 25 | 24 | biimpar 477 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ (𝑃 Σg
(𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)) ∈ (Base‘𝑃) ∧ 𝑍 ∈ (Base‘𝑃)) ∧ (𝑃 Σg (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)) = 𝑍) → ∀𝑗 ∈ ℕ0
((coe1‘(𝑃
Σg (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)))‘𝑗) = ((coe1‘𝑍)‘𝑗)) | 
| 26 | 3, 22, 9, 21, 25 | syl31anc 1375 | . . . . . . 7
⊢ (𝜑 → ∀𝑗 ∈ ℕ0
((coe1‘(𝑃
Σg (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)))‘𝑗) = ((coe1‘𝑍)‘𝑗)) | 
| 27 | 26 | r19.21bi 3251 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
((coe1‘(𝑃
Σg (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)))‘𝑗) = ((coe1‘𝑍)‘𝑗)) | 
| 28 | 20, 27 | sylan2 593 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((coe1‘(𝑃 Σg
(𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)))‘𝑗) = ((coe1‘𝑍)‘𝑗)) | 
| 29 | 2 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐴 Fn (0..^𝑁)) | 
| 30 |  | nfv 1914 | . . . . . . . . . . . 12
⊢
Ⅎ𝑛𝜑 | 
| 31 |  | ovexd 7466 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ V) | 
| 32 |  | ply1gsumz.f | . . . . . . . . . . . 12
⊢ 𝐹 = (𝑛 ∈ (0..^𝑁) ↦ (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅))) | 
| 33 | 30, 31, 32 | fnmptd 6709 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn (0..^𝑁)) | 
| 34 | 33 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐹 Fn (0..^𝑁)) | 
| 35 |  | ovexd 7466 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (0..^𝑁) ∈ V) | 
| 36 |  | inidm 4227 | . . . . . . . . . 10
⊢
((0..^𝑁) ∩
(0..^𝑁)) = (0..^𝑁) | 
| 37 |  | eqidd 2738 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝐴‘𝑖) = (𝐴‘𝑖)) | 
| 38 |  | oveq1 7438 | . . . . . . . . . . 11
⊢ (𝑛 = 𝑖 → (𝑛(.g‘(mulGrp‘𝑃))(var1‘𝑅)) = (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))) | 
| 39 |  | simpr 484 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ (0..^𝑁)) | 
| 40 |  | ovexd 7466 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)) ∈ V) | 
| 41 | 32, 38, 39, 40 | fvmptd3 7039 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝐹‘𝑖) = (𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))) | 
| 42 | 29, 34, 35, 35, 36, 37, 41 | offval 7706 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹) = (𝑖 ∈ (0..^𝑁) ↦ ((𝐴‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))) | 
| 43 | 42 | oveq2d 7447 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑃 Σg (𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)) = (𝑃 Σg (𝑖 ∈ (0..^𝑁) ↦ ((𝐴‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅)))))) | 
| 44 | 43 | fveq2d 6910 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (coe1‘(𝑃 Σg
(𝐴 ∘f (
·𝑠 ‘𝑃)𝐹))) = (coe1‘(𝑃 Σg
(𝑖 ∈ (0..^𝑁) ↦ ((𝐴‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))) | 
| 45 | 44 | fveq1d 6908 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((coe1‘(𝑃 Σg
(𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)))‘𝑗) = ((coe1‘(𝑃 Σg
(𝑖 ∈ (0..^𝑁) ↦ ((𝐴‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))‘𝑗)) | 
| 46 |  | eqid 2737 | . . . . . . 7
⊢
(var1‘𝑅) = (var1‘𝑅) | 
| 47 |  | eqid 2737 | . . . . . . 7
⊢
(.g‘(mulGrp‘𝑃)) =
(.g‘(mulGrp‘𝑃)) | 
| 48 | 3 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑅 ∈ Ring) | 
| 49 |  | eqid 2737 | . . . . . . 7
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) | 
| 50 |  | ply1gsumz.1 | . . . . . . 7
⊢  0 =
(0g‘𝑅) | 
| 51 | 1 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐴:(0..^𝑁)⟶𝐵) | 
| 52 | 51 | ffvelcdmda 7104 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑖 ∈ (0..^𝑁)) → (𝐴‘𝑖) ∈ 𝐵) | 
| 53 | 52 | ralrimiva 3146 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∀𝑖 ∈ (0..^𝑁)(𝐴‘𝑖) ∈ 𝐵) | 
| 54 |  | ply1gsumz.n | . . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
ℕ0) | 
| 55 | 54 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈
ℕ0) | 
| 56 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑖 = 𝑗 → (𝐴‘𝑖) = (𝐴‘𝑗)) | 
| 57 | 4, 6, 46, 47, 48, 11, 49, 50, 53, 18, 55, 56 | gsummoncoe1fzo 33618 | . . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((coe1‘(𝑃 Σg
(𝑖 ∈ (0..^𝑁) ↦ ((𝐴‘𝑖)( ·𝑠
‘𝑃)(𝑖(.g‘(mulGrp‘𝑃))(var1‘𝑅))))))‘𝑗) = (𝐴‘𝑗)) | 
| 58 | 45, 57 | eqtrd 2777 | . . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((coe1‘(𝑃 Σg
(𝐴 ∘f (
·𝑠 ‘𝑃)𝐹)))‘𝑗) = (𝐴‘𝑗)) | 
| 59 | 19, 28, 58 | 3eqtr2rd 2784 | . . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴‘𝑗) = (((coe1‘𝑍) ↾ (0..^𝑁))‘𝑗)) | 
| 60 | 2, 17, 59 | eqfnfvd 7054 | . . 3
⊢ (𝜑 → 𝐴 = ((coe1‘𝑍) ↾ (0..^𝑁))) | 
| 61 | 4, 7, 50 | coe1z 22266 | . . . . 5
⊢ (𝑅 ∈ Ring →
(coe1‘𝑍) =
(ℕ0 × { 0 })) | 
| 62 | 3, 61 | syl 17 | . . . 4
⊢ (𝜑 →
(coe1‘𝑍) =
(ℕ0 × { 0 })) | 
| 63 | 62 | reseq1d 5996 | . . 3
⊢ (𝜑 →
((coe1‘𝑍)
↾ (0..^𝑁)) =
((ℕ0 × { 0 }) ↾ (0..^𝑁))) | 
| 64 | 60, 63 | eqtrd 2777 | . 2
⊢ (𝜑 → 𝐴 = ((ℕ0 × { 0 }) ↾
(0..^𝑁))) | 
| 65 |  | xpssres 6036 | . . 3
⊢
((0..^𝑁) ⊆
ℕ0 → ((ℕ0 × { 0 }) ↾ (0..^𝑁)) = ((0..^𝑁) × { 0 })) | 
| 66 | 15, 65 | ax-mp 5 | . 2
⊢
((ℕ0 × { 0 }) ↾ (0..^𝑁)) = ((0..^𝑁) × { 0 }) | 
| 67 | 64, 66 | eqtrdi 2793 | 1
⊢ (𝜑 → 𝐴 = ((0..^𝑁) × { 0 })) |