Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege108d Structured version   Visualization version   GIF version

Theorem frege108d 43727
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 108 of [Frege1879] p. 74. Compare with frege108 43942. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege108d.r (𝜑𝑅 ∈ V)
frege108d.a (𝜑𝐴 ∈ V)
frege108d.b (𝜑𝐵 ∈ V)
frege108d.c (𝜑𝐶 ∈ V)
frege108d.ac (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
frege108d.cb (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
frege108d (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵))

Proof of Theorem frege108d
StepHypRef Expression
1 frege108d.r . . 3 (𝜑𝑅 ∈ V)
2 frege108d.a . . 3 (𝜑𝐴 ∈ V)
3 frege108d.b . . 3 (𝜑𝐵 ∈ V)
4 frege108d.c . . 3 (𝜑𝐶 ∈ V)
5 frege108d.ac . . 3 (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
6 frege108d.cb . . 3 (𝜑𝐶𝑅𝐵)
71, 2, 3, 4, 5, 6frege102d 43725 . 2 (𝜑𝐴(t+‘𝑅)𝐵)
87frege106d 43726 1 (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2108  Vcvv 3459   class class class wbr 5119  cfv 6530  t+ctcl 15002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6483  df-fun 6532  df-fv 6538  df-trcl 15004
This theorem is referenced by:  frege111d  43730
  Copyright terms: Public domain W3C validator