![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege108d | Structured version Visualization version GIF version |
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 108 of [Frege1879] p. 74. Compare with frege108 43919. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege108d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege108d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege108d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege108d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
frege108d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
frege108d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
Ref | Expression |
---|---|
frege108d | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege108d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | frege108d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
3 | frege108d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
4 | frege108d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
5 | frege108d.ac | . . 3 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
6 | frege108d.cb | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | frege102d 43702 | . 2 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
8 | 7 | frege106d 43703 | 1 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1535 ∈ wcel 2104 Vcvv 3477 class class class wbr 5149 ‘cfv 6558 t+ctcl 15010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3433 df-v 3479 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-int 4954 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-iota 6510 df-fun 6560 df-fv 6566 df-trcl 15012 |
This theorem is referenced by: frege111d 43707 |
Copyright terms: Public domain | W3C validator |