| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege108d | Structured version Visualization version GIF version | ||
| Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 108 of [Frege1879] p. 74. Compare with frege108 43942. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege108d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege108d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
| frege108d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
| frege108d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
| frege108d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
| frege108d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
| Ref | Expression |
|---|---|
| frege108d | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege108d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | frege108d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 3 | frege108d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 4 | frege108d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
| 5 | frege108d.ac | . . 3 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
| 6 | frege108d.cb | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | frege102d 43725 | . 2 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| 8 | 7 | frege106d 43726 | 1 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 ‘cfv 6530 t+ctcl 15002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6483 df-fun 6532 df-fv 6538 df-trcl 15004 |
| This theorem is referenced by: frege111d 43730 |
| Copyright terms: Public domain | W3C validator |