Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege102d Structured version   Visualization version   GIF version

Theorem frege102d 42960
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 43171. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege102d.r (𝜑𝑅 ∈ V)
frege102d.a (𝜑𝐴 ∈ V)
frege102d.b (𝜑𝐵 ∈ V)
frege102d.c (𝜑𝐶 ∈ V)
frege102d.ac (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
frege102d.cb (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
frege102d (𝜑𝐴(t+‘𝑅)𝐵)

Proof of Theorem frege102d
StepHypRef Expression
1 frege102d.r . . . 4 (𝜑𝑅 ∈ V)
21adantr 480 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝑅 ∈ V)
3 frege102d.a . . . 4 (𝜑𝐴 ∈ V)
43adantr 480 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐴 ∈ V)
5 frege102d.b . . . 4 (𝜑𝐵 ∈ V)
65adantr 480 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐵 ∈ V)
7 frege102d.c . . . 4 (𝜑𝐶 ∈ V)
87adantr 480 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐶 ∈ V)
9 simpr 484 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐶)
10 frege102d.cb . . . 4 (𝜑𝐶𝑅𝐵)
1110adantr 480 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐶𝑅𝐵)
122, 4, 6, 8, 9, 11frege96d 42955 . 2 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐵)
131adantr 480 . . 3 ((𝜑𝐴 = 𝐶) → 𝑅 ∈ V)
14 simpr 484 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
1510adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐶𝑅𝐵)
1614, 15eqbrtrd 5160 . . 3 ((𝜑𝐴 = 𝐶) → 𝐴𝑅𝐵)
1713, 16frege91d 42957 . 2 ((𝜑𝐴 = 𝐶) → 𝐴(t+‘𝑅)𝐵)
18 frege102d.ac . 2 (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
1912, 17, 18mpjaodan 955 1 (𝜑𝐴(t+‘𝑅)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844   = wceq 1533  wcel 2098  Vcvv 3466   class class class wbr 5138  cfv 6533  t+ctcl 14928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-iota 6485  df-fun 6535  df-fv 6541  df-trcl 14930
This theorem is referenced by:  frege108d  42962
  Copyright terms: Public domain W3C validator