![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege102d | Structured version Visualization version GIF version |
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 43171. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege102d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege102d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege102d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege102d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
frege102d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
frege102d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
Ref | Expression |
---|---|
frege102d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege102d.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝑅 ∈ V) |
3 | frege102d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴 ∈ V) |
5 | frege102d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐵 ∈ V) |
7 | frege102d.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐶 ∈ V) |
9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐶) | |
10 | frege102d.cb | . . . 4 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐶𝑅𝐵) |
12 | 2, 4, 6, 8, 9, 11 | frege96d 42955 | . 2 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐵) |
13 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝑅 ∈ V) |
14 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
15 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐶𝑅𝐵) |
16 | 14, 15 | eqbrtrd 5160 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴𝑅𝐵) |
17 | 13, 16 | frege91d 42957 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴(t+‘𝑅)𝐵) |
18 | frege102d.ac | . 2 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
19 | 12, 17, 18 | mpjaodan 955 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 Vcvv 3466 class class class wbr 5138 ‘cfv 6533 t+ctcl 14928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-iota 6485 df-fun 6535 df-fv 6541 df-trcl 14930 |
This theorem is referenced by: frege108d 42962 |
Copyright terms: Public domain | W3C validator |