Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege102d | Structured version Visualization version GIF version |
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 41462. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege102d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege102d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege102d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege102d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
frege102d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
frege102d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
Ref | Expression |
---|---|
frege102d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege102d.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝑅 ∈ V) |
3 | frege102d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴 ∈ V) |
5 | frege102d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐵 ∈ V) |
7 | frege102d.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐶 ∈ V) |
9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐶) | |
10 | frege102d.cb | . . . 4 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐶𝑅𝐵) |
12 | 2, 4, 6, 8, 9, 11 | frege96d 41246 | . 2 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐵) |
13 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝑅 ∈ V) |
14 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
15 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐶𝑅𝐵) |
16 | 14, 15 | eqbrtrd 5092 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴𝑅𝐵) |
17 | 13, 16 | frege91d 41248 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴(t+‘𝑅)𝐵) |
18 | frege102d.ac | . 2 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
19 | 12, 17, 18 | mpjaodan 955 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ‘cfv 6418 t+ctcl 14624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-trcl 14626 |
This theorem is referenced by: frege108d 41253 |
Copyright terms: Public domain | W3C validator |