![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege102d | Structured version Visualization version GIF version |
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 43927. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege102d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege102d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege102d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege102d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
frege102d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
frege102d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
Ref | Expression |
---|---|
frege102d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege102d.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝑅 ∈ V) |
3 | frege102d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴 ∈ V) |
5 | frege102d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐵 ∈ V) |
7 | frege102d.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐶 ∈ V) |
9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐶) | |
10 | frege102d.cb | . . . 4 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐶𝑅𝐵) |
12 | 2, 4, 6, 8, 9, 11 | frege96d 43711 | . 2 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐵) |
13 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝑅 ∈ V) |
14 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
15 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐶𝑅𝐵) |
16 | 14, 15 | eqbrtrd 5188 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴𝑅𝐵) |
17 | 13, 16 | frege91d 43713 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴(t+‘𝑅)𝐵) |
18 | frege102d.ac | . 2 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
19 | 12, 17, 18 | mpjaodan 959 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ‘cfv 6573 t+ctcl 15034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-trcl 15036 |
This theorem is referenced by: frege108d 43718 |
Copyright terms: Public domain | W3C validator |