Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege102d Structured version   Visualization version   GIF version

Theorem frege102d 43743
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 43954. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege102d.r (𝜑𝑅 ∈ V)
frege102d.a (𝜑𝐴 ∈ V)
frege102d.b (𝜑𝐵 ∈ V)
frege102d.c (𝜑𝐶 ∈ V)
frege102d.ac (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
frege102d.cb (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
frege102d (𝜑𝐴(t+‘𝑅)𝐵)

Proof of Theorem frege102d
StepHypRef Expression
1 frege102d.r . . . 4 (𝜑𝑅 ∈ V)
21adantr 480 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝑅 ∈ V)
3 frege102d.a . . . 4 (𝜑𝐴 ∈ V)
43adantr 480 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐴 ∈ V)
5 frege102d.b . . . 4 (𝜑𝐵 ∈ V)
65adantr 480 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐵 ∈ V)
7 frege102d.c . . . 4 (𝜑𝐶 ∈ V)
87adantr 480 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐶 ∈ V)
9 simpr 484 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐶)
10 frege102d.cb . . . 4 (𝜑𝐶𝑅𝐵)
1110adantr 480 . . 3 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐶𝑅𝐵)
122, 4, 6, 8, 9, 11frege96d 43738 . 2 ((𝜑𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐵)
131adantr 480 . . 3 ((𝜑𝐴 = 𝐶) → 𝑅 ∈ V)
14 simpr 484 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
1510adantr 480 . . . 4 ((𝜑𝐴 = 𝐶) → 𝐶𝑅𝐵)
1614, 15eqbrtrd 5129 . . 3 ((𝜑𝐴 = 𝐶) → 𝐴𝑅𝐵)
1713, 16frege91d 43740 . 2 ((𝜑𝐴 = 𝐶) → 𝐴(t+‘𝑅)𝐵)
18 frege102d.ac . 2 (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
1912, 17, 18mpjaodan 960 1 (𝜑𝐴(t+‘𝑅)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107  cfv 6511  t+ctcl 14951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-trcl 14953
This theorem is referenced by:  frege108d  43745
  Copyright terms: Public domain W3C validator