| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege102d | Structured version Visualization version GIF version | ||
| Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 43961. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege102d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege102d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
| frege102d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
| frege102d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
| frege102d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
| frege102d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
| Ref | Expression |
|---|---|
| frege102d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege102d.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝑅 ∈ V) |
| 3 | frege102d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴 ∈ V) |
| 5 | frege102d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐵 ∈ V) |
| 7 | frege102d.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐶 ∈ V) |
| 9 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐶) | |
| 10 | frege102d.cb | . . . 4 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐶𝑅𝐵) |
| 12 | 2, 4, 6, 8, 9, 11 | frege96d 43745 | . 2 ⊢ ((𝜑 ∧ 𝐴(t+‘𝑅)𝐶) → 𝐴(t+‘𝑅)𝐵) |
| 13 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝑅 ∈ V) |
| 14 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴 = 𝐶) | |
| 15 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐶𝑅𝐵) |
| 16 | 14, 15 | eqbrtrd 5132 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴𝑅𝐵) |
| 17 | 13, 16 | frege91d 43747 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → 𝐴(t+‘𝑅)𝐵) |
| 18 | frege102d.ac | . 2 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
| 19 | 12, 17, 18 | mpjaodan 960 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ‘cfv 6514 t+ctcl 14958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-trcl 14960 |
| This theorem is referenced by: frege108d 43752 |
| Copyright terms: Public domain | W3C validator |