![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege111d | Structured version Visualization version GIF version |
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 39108. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege111d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege111d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege111d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege111d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
frege111d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
frege111d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
Ref | Expression |
---|---|
frege111d | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege111d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | frege111d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
3 | frege111d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
4 | frege111d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
5 | frege111d.ac | . . 3 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
6 | frege111d.cb | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | frege108d 38889 | . 2 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) |
8 | 7 | frege114d 38891 | 1 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 880 ∨ w3o 1112 = wceq 1658 ∈ wcel 2166 Vcvv 3414 class class class wbr 4873 ‘cfv 6123 t+ctcl 14103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-int 4698 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-iota 6086 df-fun 6125 df-fv 6131 df-trcl 14105 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |