| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege111d | Structured version Visualization version GIF version | ||
| Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 43923. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege111d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege111d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
| frege111d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
| frege111d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
| frege111d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
| frege111d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
| Ref | Expression |
|---|---|
| frege111d | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege111d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | frege111d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 3 | frege111d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 4 | frege111d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
| 5 | frege111d.ac | . . 3 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
| 6 | frege111d.cb | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | frege108d 43705 | . 2 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) |
| 8 | 7 | frege114d 43707 | 1 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 = wceq 1539 ∈ wcel 2107 Vcvv 3457 class class class wbr 5116 ‘cfv 6527 t+ctcl 14991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-int 4920 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-iota 6480 df-fun 6529 df-fv 6535 df-trcl 14993 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |