| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege111d | Structured version Visualization version GIF version | ||
| Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 43956. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege111d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege111d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
| frege111d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
| frege111d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
| frege111d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
| frege111d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
| Ref | Expression |
|---|---|
| frege111d | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege111d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 2 | frege111d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 3 | frege111d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 4 | frege111d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
| 5 | frege111d.ac | . . 3 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
| 6 | frege111d.cb | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | frege108d 43738 | . 2 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) |
| 8 | 7 | frege114d 43740 | 1 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5109 ‘cfv 6513 t+ctcl 14957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-iota 6466 df-fun 6515 df-fv 6521 df-trcl 14959 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |