Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege111d Structured version   Visualization version   GIF version

Theorem frege111d 43732
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 43947. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege111d.r (𝜑𝑅 ∈ V)
frege111d.a (𝜑𝐴 ∈ V)
frege111d.b (𝜑𝐵 ∈ V)
frege111d.c (𝜑𝐶 ∈ V)
frege111d.ac (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
frege111d.cb (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
frege111d (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵𝐵(t+‘𝑅)𝐴))

Proof of Theorem frege111d
StepHypRef Expression
1 frege111d.r . . 3 (𝜑𝑅 ∈ V)
2 frege111d.a . . 3 (𝜑𝐴 ∈ V)
3 frege111d.b . . 3 (𝜑𝐵 ∈ V)
4 frege111d.c . . 3 (𝜑𝐶 ∈ V)
5 frege111d.ac . . 3 (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
6 frege111d.cb . . 3 (𝜑𝐶𝑅𝐵)
71, 2, 3, 4, 5, 6frege108d 43729 . 2 (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵))
87frege114d 43731 1 (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵𝐵(t+‘𝑅)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3o 1085   = wceq 1540  wcel 2109  Vcvv 3436   class class class wbr 5092  cfv 6482  t+ctcl 14892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fv 6490  df-trcl 14894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator