Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege111d Structured version   Visualization version   GIF version

Theorem frege111d 41256
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 41471. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege111d.r (𝜑𝑅 ∈ V)
frege111d.a (𝜑𝐴 ∈ V)
frege111d.b (𝜑𝐵 ∈ V)
frege111d.c (𝜑𝐶 ∈ V)
frege111d.ac (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
frege111d.cb (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
frege111d (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵𝐵(t+‘𝑅)𝐴))

Proof of Theorem frege111d
StepHypRef Expression
1 frege111d.r . . 3 (𝜑𝑅 ∈ V)
2 frege111d.a . . 3 (𝜑𝐴 ∈ V)
3 frege111d.b . . 3 (𝜑𝐵 ∈ V)
4 frege111d.c . . 3 (𝜑𝐶 ∈ V)
5 frege111d.ac . . 3 (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
6 frege111d.cb . . 3 (𝜑𝐶𝑅𝐵)
71, 2, 3, 4, 5, 6frege108d 41253 . 2 (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵))
87frege114d 41255 1 (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵𝐵(t+‘𝑅)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843  w3o 1084   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  cfv 6418  t+ctcl 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-trcl 14626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator