Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege111d | Structured version Visualization version GIF version |
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 41563. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege111d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege111d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege111d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege111d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
frege111d.ac | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) |
frege111d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
Ref | Expression |
---|---|
frege111d | ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege111d.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ V) | |
2 | frege111d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
3 | frege111d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
4 | frege111d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
5 | frege111d.ac | . . 3 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐶 ∨ 𝐴 = 𝐶)) | |
6 | frege111d.cb | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | frege108d 41345 | . 2 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵)) |
8 | 7 | frege114d 41347 | 1 ⊢ (𝜑 → (𝐴(t+‘𝑅)𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵(t+‘𝑅)𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 ∨ w3o 1085 = wceq 1539 ∈ wcel 2106 Vcvv 3429 class class class wbr 5073 ‘cfv 6426 t+ctcl 14706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3431 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-iota 6384 df-fun 6428 df-fv 6434 df-trcl 14708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |