Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege111d Structured version   Visualization version   GIF version

Theorem frege111d 38892
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 39108. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege111d.r (𝜑𝑅 ∈ V)
frege111d.a (𝜑𝐴 ∈ V)
frege111d.b (𝜑𝐵 ∈ V)
frege111d.c (𝜑𝐶 ∈ V)
frege111d.ac (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
frege111d.cb (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
frege111d (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵𝐵(t+‘𝑅)𝐴))

Proof of Theorem frege111d
StepHypRef Expression
1 frege111d.r . . 3 (𝜑𝑅 ∈ V)
2 frege111d.a . . 3 (𝜑𝐴 ∈ V)
3 frege111d.b . . 3 (𝜑𝐵 ∈ V)
4 frege111d.c . . 3 (𝜑𝐶 ∈ V)
5 frege111d.ac . . 3 (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
6 frege111d.cb . . 3 (𝜑𝐶𝑅𝐵)
71, 2, 3, 4, 5, 6frege108d 38889 . 2 (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵))
87frege114d 38891 1 (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵𝐵(t+‘𝑅)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 880  w3o 1112   = wceq 1658  wcel 2166  Vcvv 3414   class class class wbr 4873  cfv 6123  t+ctcl 14103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-int 4698  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-iota 6086  df-fun 6125  df-fv 6131  df-trcl 14105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator