Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege111d Structured version   Visualization version   GIF version

Theorem frege111d 41367
Description: If either 𝐴 and 𝐶 are the same or 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 is the successor to 𝐶, then either 𝐴 and 𝐵 are the same or 𝐴 follows 𝐵 or 𝐵 and 𝐴 in the transitive closure of 𝑅. Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 41582. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege111d.r (𝜑𝑅 ∈ V)
frege111d.a (𝜑𝐴 ∈ V)
frege111d.b (𝜑𝐵 ∈ V)
frege111d.c (𝜑𝐶 ∈ V)
frege111d.ac (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
frege111d.cb (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
frege111d (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵𝐵(t+‘𝑅)𝐴))

Proof of Theorem frege111d
StepHypRef Expression
1 frege111d.r . . 3 (𝜑𝑅 ∈ V)
2 frege111d.a . . 3 (𝜑𝐴 ∈ V)
3 frege111d.b . . 3 (𝜑𝐵 ∈ V)
4 frege111d.c . . 3 (𝜑𝐶 ∈ V)
5 frege111d.ac . . 3 (𝜑 → (𝐴(t+‘𝑅)𝐶𝐴 = 𝐶))
6 frege111d.cb . . 3 (𝜑𝐶𝑅𝐵)
71, 2, 3, 4, 5, 6frege108d 41364 . 2 (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵))
87frege114d 41366 1 (𝜑 → (𝐴(t+‘𝑅)𝐵𝐴 = 𝐵𝐵(t+‘𝑅)𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  w3o 1085   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  cfv 6433  t+ctcl 14696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-trcl 14698
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator