MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnsplit Structured version   Visualization version   GIF version

Theorem fnsnsplit 6948
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Assertion
Ref Expression
fnsnsplit ((𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))

Proof of Theorem fnsnsplit
StepHypRef Expression
1 fnresdm 6468 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
21adantr 483 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝐴) = 𝐹)
3 resundi 5869 . . 3 (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋}))
4 difsnid 4745 . . . . 5 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
54adantl 484 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
65reseq2d 5855 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = (𝐹𝐴))
7 fnressn 6922 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ↾ {𝑋}) = {⟨𝑋, (𝐹𝑋)⟩})
87uneq2d 4141 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
93, 6, 83eqtr3a 2882 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝐴) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
102, 9eqtr3d 2860 1 ((𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cdif 3935  cun 3936  {csn 4569  cop 4575  cres 5559   Fn wfn 6352  cfv 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365
This theorem is referenced by:  funresdfunsn  6953  ralxpmap  8462  reprsuc  31888  finixpnum  34879  poimirlem4  34898
  Copyright terms: Public domain W3C validator