| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnsnsplit | Structured version Visualization version GIF version | ||
| Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
| Ref | Expression |
|---|---|
| fnsnsplit | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm 6637 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) |
| 3 | resundi 5964 | . . 3 ⊢ (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) | |
| 4 | difsnid 4774 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴) |
| 6 | 5 | reseq2d 5950 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = (𝐹 ↾ 𝐴)) |
| 7 | fnressn 7130 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 ↾ {𝑋}) = {〈𝑋, (𝐹‘𝑋)〉}) | |
| 8 | 7 | uneq2d 4131 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) |
| 9 | 3, 6, 8 | 3eqtr3a 2788 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 ↾ 𝐴) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) |
| 10 | 2, 9 | eqtr3d 2766 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {〈𝑋, (𝐹‘𝑋)〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3911 ∪ cun 3912 {csn 4589 〈cop 4595 ↾ cres 5640 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: funresdfunsn 7163 ralxpmap 8869 reprsuc 34606 finixpnum 37599 poimirlem4 37618 |
| Copyright terms: Public domain | W3C validator |