Step | Hyp | Ref
| Expression |
1 | | evengpop3 44743 |
. . . 4
⊢
(∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) →
((𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3))) |
2 | 1 | imp 410 |
. . 3
⊢
((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)) |
3 | | simplll 774 |
. . . . . 6
⊢
((((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) |
4 | | 6nn 11777 |
. . . . . . . . . . 11
⊢ 6 ∈
ℕ |
5 | 4 | nnzi 12059 |
. . . . . . . . . 10
⊢ 6 ∈
ℤ |
6 | 5 | a1i 11 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘9) → 6 ∈ ℤ) |
7 | | 3z 12068 |
. . . . . . . . . 10
⊢ 3 ∈
ℤ |
8 | 7 | a1i 11 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘9) → 3 ∈ ℤ) |
9 | | 6p3e9 11848 |
. . . . . . . . . . . . 13
⊢ (6 + 3) =
9 |
10 | 9 | eqcomi 2768 |
. . . . . . . . . . . 12
⊢ 9 = (6 +
3) |
11 | 10 | fveq2i 6667 |
. . . . . . . . . . 11
⊢
(ℤ≥‘9) = (ℤ≥‘(6 +
3)) |
12 | 11 | eleq2i 2844 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘9) ↔ 𝑁 ∈ (ℤ≥‘(6 +
3))) |
13 | 12 | biimpi 219 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘9) → 𝑁 ∈ (ℤ≥‘(6 +
3))) |
14 | | eluzsub 12328 |
. . . . . . . . 9
⊢ ((6
∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑁 ∈ (ℤ≥‘(6 +
3))) → (𝑁 − 3)
∈ (ℤ≥‘6)) |
15 | 6, 8, 13, 14 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘9) → (𝑁 − 3) ∈
(ℤ≥‘6)) |
16 | 15 | adantr 484 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈
(ℤ≥‘6)) |
17 | 16 | ad3antlr 730 |
. . . . . 6
⊢
((((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 − 3) ∈
(ℤ≥‘6)) |
18 | | 3odd 44653 |
. . . . . . . . . . . . 13
⊢ 3 ∈
Odd |
19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘9) → 3 ∈ Odd ) |
20 | 19 | anim1i 617 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧
𝑁 ∈ Even
)) |
21 | 20 | adantl 485 |
. . . . . . . . . 10
⊢
((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) → (3 ∈ Odd ∧
𝑁 ∈ Even
)) |
22 | 21 | ancomd 465 |
. . . . . . . . 9
⊢
((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) → (𝑁 ∈ Even ∧ 3 ∈ Odd
)) |
23 | 22 | adantr 484 |
. . . . . . . 8
⊢
(((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) → (𝑁 ∈ Even ∧ 3 ∈ Odd
)) |
24 | 23 | adantr 484 |
. . . . . . 7
⊢
((((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 ∈ Even ∧ 3 ∈ Odd
)) |
25 | | emoo 44649 |
. . . . . . 7
⊢ ((𝑁 ∈ Even ∧ 3 ∈ Odd
) → (𝑁 − 3)
∈ Odd ) |
26 | 24, 25 | syl 17 |
. . . . . 6
⊢
((((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 − 3) ∈ Odd ) |
27 | | nnsum4primesodd 44741 |
. . . . . . 7
⊢
(∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) →
(((𝑁 − 3) ∈
(ℤ≥‘6) ∧ (𝑁 − 3) ∈ Odd ) → ∃𝑔 ∈ (ℙ
↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘))) |
28 | 27 | imp 410 |
. . . . . 6
⊢
((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
((𝑁 − 3) ∈
(ℤ≥‘6) ∧ (𝑁 − 3) ∈ Odd )) →
∃𝑔 ∈ (ℙ
↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘)) |
29 | 3, 17, 26, 28 | syl12anc 835 |
. . . . 5
⊢
((((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → ∃𝑔 ∈ (ℙ ↑m
(1...3))(𝑁 − 3) =
Σ𝑘 ∈
(1...3)(𝑔‘𝑘)) |
30 | | simpr 488 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → 𝑔:(1...3)⟶ℙ) |
31 | | 4z 12069 |
. . . . . . . . . . . . . . . . . 18
⊢ 4 ∈
ℤ |
32 | | fzonel 13114 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬ 4
∈ (1..^4) |
33 | | fzoval 13102 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (4 ∈
ℤ → (1..^4) = (1...(4 − 1))) |
34 | 31, 33 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1..^4) =
(1...(4 − 1)) |
35 | | 4cn 11773 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 4 ∈
ℂ |
36 | | ax-1cn 10647 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
ℂ |
37 | | 3cn 11769 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 3 ∈
ℂ |
38 | 35, 36, 37 | 3pm3.2i 1337 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (4 ∈
ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) |
39 | | 3p1e4 11833 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (3 + 1) =
4 |
40 | | subadd2 10942 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((4
∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) → ((4
− 1) = 3 ↔ (3 + 1) = 4)) |
41 | 39, 40 | mpbiri 261 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((4
∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) → (4 −
1) = 3) |
42 | 38, 41 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (4
− 1) = 3 |
43 | 42 | oveq2i 7168 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1...(4
− 1)) = (1...3) |
44 | 34, 43 | eqtri 2782 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (1..^4) =
(1...3) |
45 | 44 | eqcomi 2768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1...3) =
(1..^4) |
46 | 45 | eleq2i 2844 |
. . . . . . . . . . . . . . . . . . 19
⊢ (4 ∈
(1...3) ↔ 4 ∈ (1..^4)) |
47 | 32, 46 | mtbir 326 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬ 4
∈ (1...3) |
48 | 31, 47 | pm3.2i 474 |
. . . . . . . . . . . . . . . . 17
⊢ (4 ∈
ℤ ∧ ¬ 4 ∈ (1...3)) |
49 | 48 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → (4 ∈
ℤ ∧ ¬ 4 ∈ (1...3))) |
50 | | 3prm 16105 |
. . . . . . . . . . . . . . . . 17
⊢ 3 ∈
ℙ |
51 | 50 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → 3 ∈
ℙ) |
52 | | fsnunf 6945 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔:(1...3)⟶ℙ ∧ (4
∈ ℤ ∧ ¬ 4 ∈ (1...3)) ∧ 3 ∈ ℙ) →
(𝑔 ∪ {〈4,
3〉}):((1...3) ∪ {4})⟶ℙ) |
53 | 30, 49, 51, 52 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {〈4,
3〉}):((1...3) ∪ {4})⟶ℙ) |
54 | | fzval3 13169 |
. . . . . . . . . . . . . . . . . 18
⊢ (4 ∈
ℤ → (1...4) = (1..^(4 + 1))) |
55 | 31, 54 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (1...4) =
(1..^(4 + 1)) |
56 | | 1z 12065 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
ℤ |
57 | | 1re 10693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℝ |
58 | | 4re 11772 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 4 ∈
ℝ |
59 | | 1lt4 11864 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 <
4 |
60 | 57, 58, 59 | ltleii 10815 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ≤
4 |
61 | | eluz2 12302 |
. . . . . . . . . . . . . . . . . . 19
⊢ (4 ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ 4 ∈
ℤ ∧ 1 ≤ 4)) |
62 | 56, 31, 60, 61 | mpbir3an 1339 |
. . . . . . . . . . . . . . . . . 18
⊢ 4 ∈
(ℤ≥‘1) |
63 | | fzosplitsn 13208 |
. . . . . . . . . . . . . . . . . 18
⊢ (4 ∈
(ℤ≥‘1) → (1..^(4 + 1)) = ((1..^4) ∪
{4})) |
64 | 62, 63 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (1..^(4 +
1)) = ((1..^4) ∪ {4}) |
65 | 44 | uneq1i 4067 |
. . . . . . . . . . . . . . . . 17
⊢ ((1..^4)
∪ {4}) = ((1...3) ∪ {4}) |
66 | 55, 64, 65 | 3eqtri 2786 |
. . . . . . . . . . . . . . . 16
⊢ (1...4) =
((1...3) ∪ {4}) |
67 | 66 | feq2i 6496 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∪ {〈4,
3〉}):(1...4)⟶ℙ ↔ (𝑔 ∪ {〈4, 3〉}):((1...3) ∪
{4})⟶ℙ) |
68 | 53, 67 | sylibr 237 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {〈4,
3〉}):(1...4)⟶ℙ) |
69 | | prmex 16088 |
. . . . . . . . . . . . . . . 16
⊢ ℙ
∈ V |
70 | | ovex 7190 |
. . . . . . . . . . . . . . . 16
⊢ (1...4)
∈ V |
71 | 69, 70 | pm3.2i 474 |
. . . . . . . . . . . . . . 15
⊢ (ℙ
∈ V ∧ (1...4) ∈ V) |
72 | | elmapg 8436 |
. . . . . . . . . . . . . . 15
⊢ ((ℙ
∈ V ∧ (1...4) ∈ V) → ((𝑔 ∪ {〈4, 3〉}) ∈ (ℙ
↑m (1...4)) ↔ (𝑔 ∪ {〈4,
3〉}):(1...4)⟶ℙ)) |
73 | 71, 72 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {〈4, 3〉})
∈ (ℙ ↑m (1...4)) ↔ (𝑔 ∪ {〈4,
3〉}):(1...4)⟶ℙ)) |
74 | 68, 73 | mpbird 260 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {〈4, 3〉})
∈ (ℙ ↑m (1...4))) |
75 | 74 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘)) → (𝑔 ∪ {〈4, 3〉}) ∈ (ℙ
↑m (1...4))) |
76 | | fveq1 6663 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (𝑔 ∪ {〈4, 3〉}) → (𝑓‘𝑘) = ((𝑔 ∪ {〈4, 3〉})‘𝑘)) |
77 | 76 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = (𝑔 ∪ {〈4, 3〉}) ∧ 𝑘 ∈ (1...4)) → (𝑓‘𝑘) = ((𝑔 ∪ {〈4, 3〉})‘𝑘)) |
78 | 77 | sumeq2dv 15122 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑔 ∪ {〈4, 3〉}) →
Σ𝑘 ∈
(1...4)(𝑓‘𝑘) = Σ𝑘 ∈ (1...4)((𝑔 ∪ {〈4, 3〉})‘𝑘)) |
79 | 78 | eqeq2d 2770 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑔 ∪ {〈4, 3〉}) → (𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘) ↔ 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {〈4, 3〉})‘𝑘))) |
80 | 79 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘)) ∧ 𝑓 = (𝑔 ∪ {〈4, 3〉})) → (𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘) ↔ 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {〈4, 3〉})‘𝑘))) |
81 | 62 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → 4 ∈
(ℤ≥‘1)) |
82 | 66 | eleq2i 2844 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (1...4) ↔ 𝑘 ∈ ((1...3) ∪
{4})) |
83 | | elun 4057 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ((1...3) ∪ {4})
↔ (𝑘 ∈ (1...3)
∨ 𝑘 ∈
{4})) |
84 | | velsn 4542 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ {4} ↔ 𝑘 = 4) |
85 | 84 | orbi2i 910 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ (1...3) ∨ 𝑘 ∈ {4}) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 = 4)) |
86 | 82, 83, 85 | 3bitri 300 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (1...4) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 = 4)) |
87 | | elfz2 12960 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (1...3) ↔ ((1
∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (1 ≤ 𝑘 ∧ 𝑘 ≤ 3))) |
88 | | 3re 11768 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 3 ∈
ℝ |
89 | 88, 58 | pm3.2i 474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (3 ∈
ℝ ∧ 4 ∈ ℝ) |
90 | | 3lt4 11862 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ 3 <
4 |
91 | | ltnle 10772 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((3
∈ ℝ ∧ 4 ∈ ℝ) → (3 < 4 ↔ ¬ 4 ≤
3)) |
92 | 90, 91 | mpbii 236 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((3
∈ ℝ ∧ 4 ∈ ℝ) → ¬ 4 ≤ 3) |
93 | 89, 92 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ¬ 4
≤ 3 |
94 | | breq1 5040 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑘 = 4 → (𝑘 ≤ 3 ↔ 4 ≤ 3)) |
95 | 94 | eqcoms 2767 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (4 =
𝑘 → (𝑘 ≤ 3 ↔ 4 ≤
3)) |
96 | 93, 95 | mtbiri 330 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (4 =
𝑘 → ¬ 𝑘 ≤ 3) |
97 | 96 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑘 ∈ ℤ → (4 =
𝑘 → ¬ 𝑘 ≤ 3)) |
98 | 97 | necon2ad 2967 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑘 ∈ ℤ → (𝑘 ≤ 3 → 4 ≠ 𝑘)) |
99 | 98 | adantld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ ℤ → ((1 ≤
𝑘 ∧ 𝑘 ≤ 3) → 4 ≠ 𝑘)) |
100 | 99 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((1
∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((1 ≤ 𝑘 ∧ 𝑘 ≤ 3) → 4 ≠ 𝑘)) |
101 | 100 | imp 410 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((1
∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (1 ≤ 𝑘 ∧ 𝑘 ≤ 3)) → 4 ≠ 𝑘) |
102 | 87, 101 | sylbi 220 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (1...3) → 4 ≠
𝑘) |
103 | 102 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) →
4 ≠ 𝑘) |
104 | | fvunsn 6939 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (4 ≠
𝑘 → ((𝑔 ∪ {〈4,
3〉})‘𝑘) = (𝑔‘𝑘)) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) →
((𝑔 ∪ {〈4,
3〉})‘𝑘) = (𝑔‘𝑘)) |
106 | | ffvelrn 6847 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔:(1...3)⟶ℙ ∧
𝑘 ∈ (1...3)) →
(𝑔‘𝑘) ∈ ℙ) |
107 | 106 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) →
(𝑔‘𝑘) ∈ ℙ) |
108 | | prmz 16086 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔‘𝑘) ∈ ℙ → (𝑔‘𝑘) ∈ ℤ) |
109 | 107, 108 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) →
(𝑔‘𝑘) ∈ ℤ) |
110 | 109 | zcnd 12141 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) →
(𝑔‘𝑘) ∈ ℂ) |
111 | 105, 110 | eqeltrd 2853 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) →
((𝑔 ∪ {〈4,
3〉})‘𝑘) ∈
ℂ) |
112 | 111 | ex 416 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ (1...3) → (𝑔:(1...3)⟶ℙ →
((𝑔 ∪ {〈4,
3〉})‘𝑘) ∈
ℂ)) |
113 | 112 | adantld 494 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...3) → ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {〈4,
3〉})‘𝑘) ∈
ℂ)) |
114 | | fveq2 6664 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 4 → ((𝑔 ∪ {〈4, 3〉})‘𝑘) = ((𝑔 ∪ {〈4,
3〉})‘4)) |
115 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑔:(1...3)⟶ℙ → 4
∈ ℤ) |
116 | 7 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑔:(1...3)⟶ℙ → 3
∈ ℤ) |
117 | | fdm 6512 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑔:(1...3)⟶ℙ →
dom 𝑔 =
(1...3)) |
118 | | eleq2 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (dom
𝑔 = (1...3) → (4
∈ dom 𝑔 ↔ 4
∈ (1...3))) |
119 | 47, 118 | mtbiri 330 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (dom
𝑔 = (1...3) → ¬ 4
∈ dom 𝑔) |
120 | 117, 119 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑔:(1...3)⟶ℙ →
¬ 4 ∈ dom 𝑔) |
121 | | fsnunfv 6947 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((4
∈ ℤ ∧ 3 ∈ ℤ ∧ ¬ 4 ∈ dom 𝑔) → ((𝑔 ∪ {〈4, 3〉})‘4) =
3) |
122 | 115, 116,
120, 121 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔:(1...3)⟶ℙ →
((𝑔 ∪ {〈4,
3〉})‘4) = 3) |
123 | 122 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {〈4,
3〉})‘4) = 3) |
124 | 114, 123 | sylan9eq 2814 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 = 4 ∧ (𝑁 ∈ (ℤ≥‘9)
∧ 𝑔:(1...3)⟶ℙ)) → ((𝑔 ∪ {〈4,
3〉})‘𝑘) =
3) |
125 | 124, 37 | eqeltrdi 2861 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 = 4 ∧ (𝑁 ∈ (ℤ≥‘9)
∧ 𝑔:(1...3)⟶ℙ)) → ((𝑔 ∪ {〈4,
3〉})‘𝑘) ∈
ℂ) |
126 | 125 | ex 416 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 4 → ((𝑁 ∈ (ℤ≥‘9)
∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {〈4,
3〉})‘𝑘) ∈
ℂ)) |
127 | 113, 126 | jaoi 854 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ (1...3) ∨ 𝑘 = 4) → ((𝑁 ∈ (ℤ≥‘9)
∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {〈4,
3〉})‘𝑘) ∈
ℂ)) |
128 | 127 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑘 ∈ (1...3) ∨ 𝑘 = 4) → ((𝑔 ∪ {〈4,
3〉})‘𝑘) ∈
ℂ)) |
129 | 86, 128 | syl5bi 245 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → (𝑘 ∈ (1...4) → ((𝑔 ∪ {〈4,
3〉})‘𝑘) ∈
ℂ)) |
130 | 129 | imp 410 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...4)) → ((𝑔 ∪ {〈4,
3〉})‘𝑘) ∈
ℂ) |
131 | 81, 130, 114 | fsumm1 15168 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → Σ𝑘 ∈ (1...4)((𝑔 ∪ {〈4,
3〉})‘𝑘) =
(Σ𝑘 ∈ (1...(4
− 1))((𝑔 ∪
{〈4, 3〉})‘𝑘) + ((𝑔 ∪ {〈4,
3〉})‘4))) |
132 | 131 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘)) → Σ𝑘 ∈ (1...4)((𝑔 ∪ {〈4, 3〉})‘𝑘) = (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {〈4,
3〉})‘𝑘) +
((𝑔 ∪ {〈4,
3〉})‘4))) |
133 | 42 | eqcomi 2768 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 3 = (4
− 1) |
134 | 133 | oveq2i 7168 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1...3) =
(1...(4 − 1)) |
135 | 134 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → (1...3) =
(1...(4 − 1))) |
136 | 102 | adantl 485 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → 4 ≠
𝑘) |
137 | 136, 104 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → ((𝑔 ∪ {〈4,
3〉})‘𝑘) = (𝑔‘𝑘)) |
138 | 137 | eqcomd 2765 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → (𝑔‘𝑘) = ((𝑔 ∪ {〈4, 3〉})‘𝑘)) |
139 | 135, 138 | sumeq12dv 15125 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → Σ𝑘 ∈ (1...3)(𝑔‘𝑘) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {〈4,
3〉})‘𝑘)) |
140 | 139 | eqeq2d 2770 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘) ↔ (𝑁 − 3) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {〈4,
3〉})‘𝑘))) |
141 | 140 | biimpa 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘)) → (𝑁 − 3) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {〈4,
3〉})‘𝑘)) |
142 | 141 | eqcomd 2765 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘)) → Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {〈4,
3〉})‘𝑘) = (𝑁 − 3)) |
143 | 142 | oveq1d 7172 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘)) → (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {〈4,
3〉})‘𝑘) +
((𝑔 ∪ {〈4,
3〉})‘4)) = ((𝑁
− 3) + ((𝑔 ∪
{〈4, 3〉})‘4))) |
144 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → 4 ∈
ℤ) |
145 | 7 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → 3 ∈
ℤ) |
146 | 120 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ¬ 4
∈ dom 𝑔) |
147 | 144, 145,
146, 121 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {〈4,
3〉})‘4) = 3) |
148 | 147 | oveq2d 7173 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + ((𝑔 ∪ {〈4,
3〉})‘4)) = ((𝑁
− 3) + 3)) |
149 | | eluzelcn 12308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘9) → 𝑁 ∈ ℂ) |
150 | 37 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘9) → 3 ∈ ℂ) |
151 | 149, 150 | npcand 11053 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘9) → ((𝑁 − 3) + 3) = 𝑁) |
152 | 151 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + 3) = 𝑁) |
153 | 148, 152 | eqtrd 2794 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + ((𝑔 ∪ {〈4,
3〉})‘4)) = 𝑁) |
154 | 153 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘)) → ((𝑁 − 3) + ((𝑔 ∪ {〈4, 3〉})‘4)) = 𝑁) |
155 | 132, 143,
154 | 3eqtrrd 2799 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘)) → 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {〈4, 3〉})‘𝑘)) |
156 | 75, 80, 155 | rspcedvd 3547 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘)) → ∃𝑓 ∈ (ℙ ↑m
(1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘)) |
157 | 156 | ex 416 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘) → ∃𝑓 ∈ (ℙ ↑m
(1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) |
158 | 157 | expcom 417 |
. . . . . . . . 9
⊢ (𝑔:(1...3)⟶ℙ →
(𝑁 ∈
(ℤ≥‘9) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘) → ∃𝑓 ∈ (ℙ ↑m
(1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘)))) |
159 | | elmapi 8445 |
. . . . . . . . 9
⊢ (𝑔 ∈ (ℙ
↑m (1...3)) → 𝑔:(1...3)⟶ℙ) |
160 | 158, 159 | syl11 33 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘9) → (𝑔 ∈ (ℙ ↑m (1...3))
→ ((𝑁 − 3) =
Σ𝑘 ∈
(1...3)(𝑔‘𝑘) → ∃𝑓 ∈ (ℙ
↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘)))) |
161 | 160 | rexlimdv 3208 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘9) → (∃𝑔 ∈ (ℙ ↑m
(1...3))(𝑁 − 3) =
Σ𝑘 ∈
(1...3)(𝑔‘𝑘) → ∃𝑓 ∈ (ℙ
↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) |
162 | 161 | adantr 484 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even ) → (∃𝑔 ∈ (ℙ
↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔‘𝑘) → ∃𝑓 ∈ (ℙ ↑m
(1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) |
163 | 162 | ad3antlr 730 |
. . . . 5
⊢
((((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → (∃𝑔 ∈ (ℙ ↑m
(1...3))(𝑁 − 3) =
Σ𝑘 ∈
(1...3)(𝑔‘𝑘) → ∃𝑓 ∈ (ℙ
↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) |
164 | 29, 163 | mpd 15 |
. . . 4
⊢
((((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → ∃𝑓 ∈ (ℙ ↑m
(1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘)) |
165 | 164 | rexlimdva2 3212 |
. . 3
⊢
((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) → (∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3) → ∃𝑓 ∈ (ℙ ↑m
(1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) |
166 | 2, 165 | mpd 15 |
. 2
⊢
((∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) ∧
(𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even )) → ∃𝑓 ∈ (ℙ
↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘)) |
167 | 166 | ex 416 |
1
⊢
(∀𝑚 ∈
Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) →
((𝑁 ∈
(ℤ≥‘9) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ
↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) |