Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primeseven Structured version   Visualization version   GIF version

Theorem nnsum4primeseven 46082
Description: If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of 4 primes. (Contributed by AV, 25-Jul-2020.)
Assertion
Ref Expression
nnsum4primeseven (βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) β†’ ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even ) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜)))
Distinct variable group:   𝑓,𝑁,π‘˜,π‘š

Proof of Theorem nnsum4primeseven
Dummy variables π‘œ 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evengpop3 46080 . . . 4 (βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) β†’ ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even ) β†’ βˆƒπ‘œ ∈ GoldbachOddW 𝑁 = (π‘œ + 3)))
21imp 408 . . 3 ((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) β†’ βˆƒπ‘œ ∈ GoldbachOddW 𝑁 = (π‘œ + 3))
3 simplll 774 . . . . . 6 ((((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) ∧ π‘œ ∈ GoldbachOddW ) ∧ 𝑁 = (π‘œ + 3)) β†’ βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ))
4 6nn 12250 . . . . . . . . . . 11 6 ∈ β„•
54nnzi 12535 . . . . . . . . . 10 6 ∈ β„€
65a1i 11 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜9) β†’ 6 ∈ β„€)
7 3z 12544 . . . . . . . . . 10 3 ∈ β„€
87a1i 11 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜9) β†’ 3 ∈ β„€)
9 6p3e9 12321 . . . . . . . . . . . . 13 (6 + 3) = 9
109eqcomi 2742 . . . . . . . . . . . 12 9 = (6 + 3)
1110fveq2i 6849 . . . . . . . . . . 11 (β„€β‰₯β€˜9) = (β„€β‰₯β€˜(6 + 3))
1211eleq2i 2826 . . . . . . . . . 10 (𝑁 ∈ (β„€β‰₯β€˜9) ↔ 𝑁 ∈ (β„€β‰₯β€˜(6 + 3)))
1312biimpi 215 . . . . . . . . 9 (𝑁 ∈ (β„€β‰₯β€˜9) β†’ 𝑁 ∈ (β„€β‰₯β€˜(6 + 3)))
14 eluzsub 12801 . . . . . . . . 9 ((6 ∈ β„€ ∧ 3 ∈ β„€ ∧ 𝑁 ∈ (β„€β‰₯β€˜(6 + 3))) β†’ (𝑁 βˆ’ 3) ∈ (β„€β‰₯β€˜6))
156, 8, 13, 14syl3anc 1372 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜9) β†’ (𝑁 βˆ’ 3) ∈ (β„€β‰₯β€˜6))
1615adantr 482 . . . . . . 7 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even ) β†’ (𝑁 βˆ’ 3) ∈ (β„€β‰₯β€˜6))
1716ad3antlr 730 . . . . . 6 ((((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) ∧ π‘œ ∈ GoldbachOddW ) ∧ 𝑁 = (π‘œ + 3)) β†’ (𝑁 βˆ’ 3) ∈ (β„€β‰₯β€˜6))
18 3odd 45990 . . . . . . . . . . . . 13 3 ∈ Odd
1918a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (β„€β‰₯β€˜9) β†’ 3 ∈ Odd )
2019anim1i 616 . . . . . . . . . . 11 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even ) β†’ (3 ∈ Odd ∧ 𝑁 ∈ Even ))
2120adantl 483 . . . . . . . . . 10 ((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) β†’ (3 ∈ Odd ∧ 𝑁 ∈ Even ))
2221ancomd 463 . . . . . . . . 9 ((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) β†’ (𝑁 ∈ Even ∧ 3 ∈ Odd ))
2322adantr 482 . . . . . . . 8 (((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) ∧ π‘œ ∈ GoldbachOddW ) β†’ (𝑁 ∈ Even ∧ 3 ∈ Odd ))
2423adantr 482 . . . . . . 7 ((((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) ∧ π‘œ ∈ GoldbachOddW ) ∧ 𝑁 = (π‘œ + 3)) β†’ (𝑁 ∈ Even ∧ 3 ∈ Odd ))
25 emoo 45986 . . . . . . 7 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) β†’ (𝑁 βˆ’ 3) ∈ Odd )
2624, 25syl 17 . . . . . 6 ((((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) ∧ π‘œ ∈ GoldbachOddW ) ∧ 𝑁 = (π‘œ + 3)) β†’ (𝑁 βˆ’ 3) ∈ Odd )
27 nnsum4primesodd 46078 . . . . . . 7 (βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) β†’ (((𝑁 βˆ’ 3) ∈ (β„€β‰₯β€˜6) ∧ (𝑁 βˆ’ 3) ∈ Odd ) β†’ βˆƒπ‘” ∈ (β„™ ↑m (1...3))(𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜)))
2827imp 408 . . . . . 6 ((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ ((𝑁 βˆ’ 3) ∈ (β„€β‰₯β€˜6) ∧ (𝑁 βˆ’ 3) ∈ Odd )) β†’ βˆƒπ‘” ∈ (β„™ ↑m (1...3))(𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜))
293, 17, 26, 28syl12anc 836 . . . . 5 ((((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) ∧ π‘œ ∈ GoldbachOddW ) ∧ 𝑁 = (π‘œ + 3)) β†’ βˆƒπ‘” ∈ (β„™ ↑m (1...3))(𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜))
30 simpr 486 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ 𝑔:(1...3)βŸΆβ„™)
31 4z 12545 . . . . . . . . . . . . . . . . . 18 4 ∈ β„€
32 fzonel 13595 . . . . . . . . . . . . . . . . . . 19 Β¬ 4 ∈ (1..^4)
33 fzoval 13582 . . . . . . . . . . . . . . . . . . . . . . 23 (4 ∈ β„€ β†’ (1..^4) = (1...(4 βˆ’ 1)))
3431, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (1..^4) = (1...(4 βˆ’ 1))
35 4cn 12246 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ β„‚
36 ax-1cn 11117 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ β„‚
37 3cn 12242 . . . . . . . . . . . . . . . . . . . . . . . . 25 3 ∈ β„‚
3835, 36, 373pm3.2i 1340 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 ∈ β„‚ ∧ 1 ∈ β„‚ ∧ 3 ∈ β„‚)
39 3p1e4 12306 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 + 1) = 4
40 subadd2 11413 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((4 ∈ β„‚ ∧ 1 ∈ β„‚ ∧ 3 ∈ β„‚) β†’ ((4 βˆ’ 1) = 3 ↔ (3 + 1) = 4))
4139, 40mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ β„‚ ∧ 1 ∈ β„‚ ∧ 3 ∈ β„‚) β†’ (4 βˆ’ 1) = 3)
4238, 41ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (4 βˆ’ 1) = 3
4342oveq2i 7372 . . . . . . . . . . . . . . . . . . . . . 22 (1...(4 βˆ’ 1)) = (1...3)
4434, 43eqtri 2761 . . . . . . . . . . . . . . . . . . . . 21 (1..^4) = (1...3)
4544eqcomi 2742 . . . . . . . . . . . . . . . . . . . 20 (1...3) = (1..^4)
4645eleq2i 2826 . . . . . . . . . . . . . . . . . . 19 (4 ∈ (1...3) ↔ 4 ∈ (1..^4))
4732, 46mtbir 323 . . . . . . . . . . . . . . . . . 18 Β¬ 4 ∈ (1...3)
4831, 47pm3.2i 472 . . . . . . . . . . . . . . . . 17 (4 ∈ β„€ ∧ Β¬ 4 ∈ (1...3))
4948a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ (4 ∈ β„€ ∧ Β¬ 4 ∈ (1...3)))
50 3prm 16578 . . . . . . . . . . . . . . . . 17 3 ∈ β„™
5150a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ 3 ∈ β„™)
52 fsnunf 7135 . . . . . . . . . . . . . . . 16 ((𝑔:(1...3)βŸΆβ„™ ∧ (4 ∈ β„€ ∧ Β¬ 4 ∈ (1...3)) ∧ 3 ∈ β„™) β†’ (𝑔 βˆͺ {⟨4, 3⟩}):((1...3) βˆͺ {4})βŸΆβ„™)
5330, 49, 51, 52syl3anc 1372 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ (𝑔 βˆͺ {⟨4, 3⟩}):((1...3) βˆͺ {4})βŸΆβ„™)
54 fzval3 13650 . . . . . . . . . . . . . . . . . 18 (4 ∈ β„€ β†’ (1...4) = (1..^(4 + 1)))
5531, 54ax-mp 5 . . . . . . . . . . . . . . . . 17 (1...4) = (1..^(4 + 1))
56 1z 12541 . . . . . . . . . . . . . . . . . . 19 1 ∈ β„€
57 1re 11163 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
58 4re 12245 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℝ
59 1lt4 12337 . . . . . . . . . . . . . . . . . . . 20 1 < 4
6057, 58, 59ltleii 11286 . . . . . . . . . . . . . . . . . . 19 1 ≀ 4
61 eluz2 12777 . . . . . . . . . . . . . . . . . . 19 (4 ∈ (β„€β‰₯β€˜1) ↔ (1 ∈ β„€ ∧ 4 ∈ β„€ ∧ 1 ≀ 4))
6256, 31, 60, 61mpbir3an 1342 . . . . . . . . . . . . . . . . . 18 4 ∈ (β„€β‰₯β€˜1)
63 fzosplitsn 13689 . . . . . . . . . . . . . . . . . 18 (4 ∈ (β„€β‰₯β€˜1) β†’ (1..^(4 + 1)) = ((1..^4) βˆͺ {4}))
6462, 63ax-mp 5 . . . . . . . . . . . . . . . . 17 (1..^(4 + 1)) = ((1..^4) βˆͺ {4})
6544uneq1i 4123 . . . . . . . . . . . . . . . . 17 ((1..^4) βˆͺ {4}) = ((1...3) βˆͺ {4})
6655, 64, 653eqtri 2765 . . . . . . . . . . . . . . . 16 (1...4) = ((1...3) βˆͺ {4})
6766feq2i 6664 . . . . . . . . . . . . . . 15 ((𝑔 βˆͺ {⟨4, 3⟩}):(1...4)βŸΆβ„™ ↔ (𝑔 βˆͺ {⟨4, 3⟩}):((1...3) βˆͺ {4})βŸΆβ„™)
6853, 67sylibr 233 . . . . . . . . . . . . . 14 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ (𝑔 βˆͺ {⟨4, 3⟩}):(1...4)βŸΆβ„™)
69 prmex 16561 . . . . . . . . . . . . . . . 16 β„™ ∈ V
70 ovex 7394 . . . . . . . . . . . . . . . 16 (1...4) ∈ V
7169, 70pm3.2i 472 . . . . . . . . . . . . . . 15 (β„™ ∈ V ∧ (1...4) ∈ V)
72 elmapg 8784 . . . . . . . . . . . . . . 15 ((β„™ ∈ V ∧ (1...4) ∈ V) β†’ ((𝑔 βˆͺ {⟨4, 3⟩}) ∈ (β„™ ↑m (1...4)) ↔ (𝑔 βˆͺ {⟨4, 3⟩}):(1...4)βŸΆβ„™))
7371, 72mp1i 13 . . . . . . . . . . . . . 14 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑔 βˆͺ {⟨4, 3⟩}) ∈ (β„™ ↑m (1...4)) ↔ (𝑔 βˆͺ {⟨4, 3⟩}):(1...4)βŸΆβ„™))
7468, 73mpbird 257 . . . . . . . . . . . . 13 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ (𝑔 βˆͺ {⟨4, 3⟩}) ∈ (β„™ ↑m (1...4)))
7574adantr 482 . . . . . . . . . . . 12 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜)) β†’ (𝑔 βˆͺ {⟨4, 3⟩}) ∈ (β„™ ↑m (1...4)))
76 fveq1 6845 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑔 βˆͺ {⟨4, 3⟩}) β†’ (π‘“β€˜π‘˜) = ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜))
7776adantr 482 . . . . . . . . . . . . . . 15 ((𝑓 = (𝑔 βˆͺ {⟨4, 3⟩}) ∧ π‘˜ ∈ (1...4)) β†’ (π‘“β€˜π‘˜) = ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜))
7877sumeq2dv 15596 . . . . . . . . . . . . . 14 (𝑓 = (𝑔 βˆͺ {⟨4, 3⟩}) β†’ Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜) = Ξ£π‘˜ ∈ (1...4)((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜))
7978eqeq2d 2744 . . . . . . . . . . . . 13 (𝑓 = (𝑔 βˆͺ {⟨4, 3⟩}) β†’ (𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜) ↔ 𝑁 = Ξ£π‘˜ ∈ (1...4)((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜)))
8079adantl 483 . . . . . . . . . . . 12 ((((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜)) ∧ 𝑓 = (𝑔 βˆͺ {⟨4, 3⟩})) β†’ (𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜) ↔ 𝑁 = Ξ£π‘˜ ∈ (1...4)((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜)))
8162a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ 4 ∈ (β„€β‰₯β€˜1))
8266eleq2i 2826 . . . . . . . . . . . . . . . . . 18 (π‘˜ ∈ (1...4) ↔ π‘˜ ∈ ((1...3) βˆͺ {4}))
83 elun 4112 . . . . . . . . . . . . . . . . . 18 (π‘˜ ∈ ((1...3) βˆͺ {4}) ↔ (π‘˜ ∈ (1...3) ∨ π‘˜ ∈ {4}))
84 velsn 4606 . . . . . . . . . . . . . . . . . . 19 (π‘˜ ∈ {4} ↔ π‘˜ = 4)
8584orbi2i 912 . . . . . . . . . . . . . . . . . 18 ((π‘˜ ∈ (1...3) ∨ π‘˜ ∈ {4}) ↔ (π‘˜ ∈ (1...3) ∨ π‘˜ = 4))
8682, 83, 853bitri 297 . . . . . . . . . . . . . . . . 17 (π‘˜ ∈ (1...4) ↔ (π‘˜ ∈ (1...3) ∨ π‘˜ = 4))
87 elfz2 13440 . . . . . . . . . . . . . . . . . . . . . . . . 25 (π‘˜ ∈ (1...3) ↔ ((1 ∈ β„€ ∧ 3 ∈ β„€ ∧ π‘˜ ∈ β„€) ∧ (1 ≀ π‘˜ ∧ π‘˜ ≀ 3)))
88 3re 12241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 ∈ ℝ
8988, 58pm3.2i 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (3 ∈ ℝ ∧ 4 ∈ ℝ)
90 3lt4 12335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 < 4
91 ltnle 11242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((3 ∈ ℝ ∧ 4 ∈ ℝ) β†’ (3 < 4 ↔ Β¬ 4 ≀ 3))
9290, 91mpbii 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((3 ∈ ℝ ∧ 4 ∈ ℝ) β†’ Β¬ 4 ≀ 3)
9389, 92ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Β¬ 4 ≀ 3
94 breq1 5112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (π‘˜ = 4 β†’ (π‘˜ ≀ 3 ↔ 4 ≀ 3))
9594eqcoms 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (4 = π‘˜ β†’ (π‘˜ ≀ 3 ↔ 4 ≀ 3))
9693, 95mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (4 = π‘˜ β†’ Β¬ π‘˜ ≀ 3)
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (π‘˜ ∈ β„€ β†’ (4 = π‘˜ β†’ Β¬ π‘˜ ≀ 3))
9897necon2ad 2955 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (π‘˜ ∈ β„€ β†’ (π‘˜ ≀ 3 β†’ 4 β‰  π‘˜))
9998adantld 492 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (π‘˜ ∈ β„€ β†’ ((1 ≀ π‘˜ ∧ π‘˜ ≀ 3) β†’ 4 β‰  π‘˜))
100993ad2ant3 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 ∈ β„€ ∧ 3 ∈ β„€ ∧ π‘˜ ∈ β„€) β†’ ((1 ≀ π‘˜ ∧ π‘˜ ≀ 3) β†’ 4 β‰  π‘˜))
101100imp 408 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1 ∈ β„€ ∧ 3 ∈ β„€ ∧ π‘˜ ∈ β„€) ∧ (1 ≀ π‘˜ ∧ π‘˜ ≀ 3)) β†’ 4 β‰  π‘˜)
10287, 101sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (π‘˜ ∈ (1...3) β†’ 4 β‰  π‘˜)
103102adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘˜ ∈ (1...3) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ 4 β‰  π‘˜)
104 fvunsn 7129 . . . . . . . . . . . . . . . . . . . . . . 23 (4 β‰  π‘˜ β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) = (π‘”β€˜π‘˜))
105103, 104syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘˜ ∈ (1...3) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) = (π‘”β€˜π‘˜))
106 ffvelcdm 7036 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:(1...3)βŸΆβ„™ ∧ π‘˜ ∈ (1...3)) β†’ (π‘”β€˜π‘˜) ∈ β„™)
107106ancoms 460 . . . . . . . . . . . . . . . . . . . . . . . 24 ((π‘˜ ∈ (1...3) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ (π‘”β€˜π‘˜) ∈ β„™)
108 prmz 16559 . . . . . . . . . . . . . . . . . . . . . . . 24 ((π‘”β€˜π‘˜) ∈ β„™ β†’ (π‘”β€˜π‘˜) ∈ β„€)
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘˜ ∈ (1...3) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ (π‘”β€˜π‘˜) ∈ β„€)
110109zcnd 12616 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘˜ ∈ (1...3) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ (π‘”β€˜π‘˜) ∈ β„‚)
111105, 110eqeltrd 2834 . . . . . . . . . . . . . . . . . . . . 21 ((π‘˜ ∈ (1...3) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) ∈ β„‚)
112111ex 414 . . . . . . . . . . . . . . . . . . . 20 (π‘˜ ∈ (1...3) β†’ (𝑔:(1...3)βŸΆβ„™ β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) ∈ β„‚))
113112adantld 492 . . . . . . . . . . . . . . . . . . 19 (π‘˜ ∈ (1...3) β†’ ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) ∈ β„‚))
114 fveq2 6846 . . . . . . . . . . . . . . . . . . . . . 22 (π‘˜ = 4 β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) = ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4))
11531a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:(1...3)βŸΆβ„™ β†’ 4 ∈ β„€)
1167a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:(1...3)βŸΆβ„™ β†’ 3 ∈ β„€)
117 fdm 6681 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔:(1...3)βŸΆβ„™ β†’ dom 𝑔 = (1...3))
118 eleq2 2823 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑔 = (1...3) β†’ (4 ∈ dom 𝑔 ↔ 4 ∈ (1...3)))
11947, 118mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑔 = (1...3) β†’ Β¬ 4 ∈ dom 𝑔)
120117, 119syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:(1...3)βŸΆβ„™ β†’ Β¬ 4 ∈ dom 𝑔)
121 fsnunfv 7137 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ β„€ ∧ 3 ∈ β„€ ∧ Β¬ 4 ∈ dom 𝑔) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4) = 3)
122115, 116, 120, 121syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)βŸΆβ„™ β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4) = 3)
123122adantl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4) = 3)
124114, 123sylan9eq 2793 . . . . . . . . . . . . . . . . . . . . 21 ((π‘˜ = 4 ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™)) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) = 3)
125124, 37eqeltrdi 2842 . . . . . . . . . . . . . . . . . . . 20 ((π‘˜ = 4 ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™)) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) ∈ β„‚)
126125ex 414 . . . . . . . . . . . . . . . . . . 19 (π‘˜ = 4 β†’ ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) ∈ β„‚))
127113, 126jaoi 856 . . . . . . . . . . . . . . . . . 18 ((π‘˜ ∈ (1...3) ∨ π‘˜ = 4) β†’ ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) ∈ β„‚))
128127com12 32 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((π‘˜ ∈ (1...3) ∨ π‘˜ = 4) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) ∈ β„‚))
12986, 128biimtrid 241 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ (π‘˜ ∈ (1...4) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) ∈ β„‚))
130129imp 408 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ π‘˜ ∈ (1...4)) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) ∈ β„‚)
13181, 130, 114fsumm1 15644 . . . . . . . . . . . . . 14 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ Ξ£π‘˜ ∈ (1...4)((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) = (Ξ£π‘˜ ∈ (1...(4 βˆ’ 1))((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) + ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4)))
132131adantr 482 . . . . . . . . . . . . 13 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜)) β†’ Ξ£π‘˜ ∈ (1...4)((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) = (Ξ£π‘˜ ∈ (1...(4 βˆ’ 1))((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) + ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4)))
13342eqcomi 2742 . . . . . . . . . . . . . . . . . . . 20 3 = (4 βˆ’ 1)
134133oveq2i 7372 . . . . . . . . . . . . . . . . . . 19 (1...3) = (1...(4 βˆ’ 1))
135134a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ (1...3) = (1...(4 βˆ’ 1)))
136102adantl 483 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ π‘˜ ∈ (1...3)) β†’ 4 β‰  π‘˜)
137136, 104syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ π‘˜ ∈ (1...3)) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) = (π‘”β€˜π‘˜))
138137eqcomd 2739 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ π‘˜ ∈ (1...3)) β†’ (π‘”β€˜π‘˜) = ((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜))
139135, 138sumeq12dv 15599 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜) = Ξ£π‘˜ ∈ (1...(4 βˆ’ 1))((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜))
140139eqeq2d 2744 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜) ↔ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...(4 βˆ’ 1))((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜)))
141140biimpa 478 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜)) β†’ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...(4 βˆ’ 1))((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜))
142141eqcomd 2739 . . . . . . . . . . . . . 14 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜)) β†’ Ξ£π‘˜ ∈ (1...(4 βˆ’ 1))((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) = (𝑁 βˆ’ 3))
143142oveq1d 7376 . . . . . . . . . . . . 13 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜)) β†’ (Ξ£π‘˜ ∈ (1...(4 βˆ’ 1))((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜) + ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4)) = ((𝑁 βˆ’ 3) + ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4)))
14431a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ 4 ∈ β„€)
1457a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ 3 ∈ β„€)
146120adantl 483 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ Β¬ 4 ∈ dom 𝑔)
147144, 145, 146, 121syl3anc 1372 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4) = 3)
148147oveq2d 7377 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑁 βˆ’ 3) + ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4)) = ((𝑁 βˆ’ 3) + 3))
149 eluzelcn 12783 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (β„€β‰₯β€˜9) β†’ 𝑁 ∈ β„‚)
15037a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (β„€β‰₯β€˜9) β†’ 3 ∈ β„‚)
151149, 150npcand 11524 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (β„€β‰₯β€˜9) β†’ ((𝑁 βˆ’ 3) + 3) = 𝑁)
152151adantr 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑁 βˆ’ 3) + 3) = 𝑁)
153148, 152eqtrd 2773 . . . . . . . . . . . . . 14 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑁 βˆ’ 3) + ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4)) = 𝑁)
154153adantr 482 . . . . . . . . . . . . 13 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜)) β†’ ((𝑁 βˆ’ 3) + ((𝑔 βˆͺ {⟨4, 3⟩})β€˜4)) = 𝑁)
155132, 143, 1543eqtrrd 2778 . . . . . . . . . . . 12 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜)) β†’ 𝑁 = Ξ£π‘˜ ∈ (1...4)((𝑔 βˆͺ {⟨4, 3⟩})β€˜π‘˜))
15675, 80, 155rspcedvd 3585 . . . . . . . . . . 11 (((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) ∧ (𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜)) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜))
157156ex 414 . . . . . . . . . 10 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑔:(1...3)βŸΆβ„™) β†’ ((𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜)))
158157expcom 415 . . . . . . . . 9 (𝑔:(1...3)βŸΆβ„™ β†’ (𝑁 ∈ (β„€β‰₯β€˜9) β†’ ((𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜))))
159 elmapi 8793 . . . . . . . . 9 (𝑔 ∈ (β„™ ↑m (1...3)) β†’ 𝑔:(1...3)βŸΆβ„™)
160158, 159syl11 33 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜9) β†’ (𝑔 ∈ (β„™ ↑m (1...3)) β†’ ((𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜))))
161160rexlimdv 3147 . . . . . . 7 (𝑁 ∈ (β„€β‰₯β€˜9) β†’ (βˆƒπ‘” ∈ (β„™ ↑m (1...3))(𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜)))
162161adantr 482 . . . . . 6 ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even ) β†’ (βˆƒπ‘” ∈ (β„™ ↑m (1...3))(𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜)))
163162ad3antlr 730 . . . . 5 ((((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) ∧ π‘œ ∈ GoldbachOddW ) ∧ 𝑁 = (π‘œ + 3)) β†’ (βˆƒπ‘” ∈ (β„™ ↑m (1...3))(𝑁 βˆ’ 3) = Ξ£π‘˜ ∈ (1...3)(π‘”β€˜π‘˜) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜)))
16429, 163mpd 15 . . . 4 ((((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) ∧ π‘œ ∈ GoldbachOddW ) ∧ 𝑁 = (π‘œ + 3)) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜))
165164rexlimdva2 3151 . . 3 ((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) β†’ (βˆƒπ‘œ ∈ GoldbachOddW 𝑁 = (π‘œ + 3) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜)))
1662, 165mpd 15 . 2 ((βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) ∧ (𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even )) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜))
167166ex 414 1 (βˆ€π‘š ∈ Odd (5 < π‘š β†’ π‘š ∈ GoldbachOddW ) β†’ ((𝑁 ∈ (β„€β‰₯β€˜9) ∧ 𝑁 ∈ Even ) β†’ βˆƒπ‘“ ∈ (β„™ ↑m (1...4))𝑁 = Ξ£π‘˜ ∈ (1...4)(π‘“β€˜π‘˜)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070  Vcvv 3447   βˆͺ cun 3912  {csn 4590  βŸ¨cop 4596   class class class wbr 5109  dom cdm 5637  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361   ↑m cmap 8771  β„‚cc 11057  β„cr 11058  1c1 11060   + caddc 11062   < clt 11197   ≀ cle 11198   βˆ’ cmin 11393  3c3 12217  4c4 12218  5c5 12219  6c6 12220  9c9 12223  β„€cz 12507  β„€β‰₯cuz 12771  ...cfz 13433  ..^cfzo 13576  Ξ£csu 15579  β„™cprime 16555   Even ceven 45906   Odd codd 45907   GoldbachOddW cgbow 46028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-inf2 9585  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-tp 4595  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-sup 9386  df-oi 9454  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-7 12229  df-8 12230  df-9 12231  df-n0 12422  df-z 12508  df-uz 12772  df-rp 12924  df-fz 13434  df-fzo 13577  df-seq 13916  df-exp 13977  df-hash 14240  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-clim 15379  df-sum 15580  df-dvds 16145  df-prm 16556  df-even 45908  df-odd 45909  df-gbow 46031
This theorem is referenced by:  wtgoldbnnsum4prm  46084
  Copyright terms: Public domain W3C validator