Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primeseven Structured version   Visualization version   GIF version

Theorem nnsum4primeseven 47724
Description: If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of 4 primes. (Contributed by AV, 25-Jul-2020.)
Assertion
Ref Expression
nnsum4primeseven (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑁,𝑘,𝑚

Proof of Theorem nnsum4primeseven
Dummy variables 𝑜 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evengpop3 47722 . . . 4 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3)))
21imp 406 . . 3 ((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3))
3 simplll 775 . . . . . 6 ((((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ))
4 6nn 12352 . . . . . . . . . . 11 6 ∈ ℕ
54nnzi 12638 . . . . . . . . . 10 6 ∈ ℤ
65a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 6 ∈ ℤ)
7 3z 12647 . . . . . . . . . 10 3 ∈ ℤ
87a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 3 ∈ ℤ)
9 6p3e9 12423 . . . . . . . . . . . . 13 (6 + 3) = 9
109eqcomi 2743 . . . . . . . . . . . 12 9 = (6 + 3)
1110fveq2i 6909 . . . . . . . . . . 11 (ℤ‘9) = (ℤ‘(6 + 3))
1211eleq2i 2830 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘9) ↔ 𝑁 ∈ (ℤ‘(6 + 3)))
1312biimpi 216 . . . . . . . . 9 (𝑁 ∈ (ℤ‘9) → 𝑁 ∈ (ℤ‘(6 + 3)))
14 eluzsub 12905 . . . . . . . . 9 ((6 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(6 + 3))) → (𝑁 − 3) ∈ (ℤ‘6))
156, 8, 13, 14syl3anc 1370 . . . . . . . 8 (𝑁 ∈ (ℤ‘9) → (𝑁 − 3) ∈ (ℤ‘6))
1615adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (𝑁 − 3) ∈ (ℤ‘6))
1716ad3antlr 731 . . . . . 6 ((((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 − 3) ∈ (ℤ‘6))
18 3odd 47632 . . . . . . . . . . . . 13 3 ∈ Odd
1918a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘9) → 3 ∈ Odd )
2019anim1i 615 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
2120adantl 481 . . . . . . . . . 10 ((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) → (3 ∈ Odd ∧ 𝑁 ∈ Even ))
2221ancomd 461 . . . . . . . . 9 ((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
2322adantr 480 . . . . . . . 8 (((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
2423adantr 480 . . . . . . 7 ((((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 ∈ Even ∧ 3 ∈ Odd ))
25 emoo 47628 . . . . . . 7 ((𝑁 ∈ Even ∧ 3 ∈ Odd ) → (𝑁 − 3) ∈ Odd )
2624, 25syl 17 . . . . . 6 ((((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → (𝑁 − 3) ∈ Odd )
27 nnsum4primesodd 47720 . . . . . . 7 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → (((𝑁 − 3) ∈ (ℤ‘6) ∧ (𝑁 − 3) ∈ Odd ) → ∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)))
2827imp 406 . . . . . 6 ((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ ((𝑁 − 3) ∈ (ℤ‘6) ∧ (𝑁 − 3) ∈ Odd )) → ∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘))
293, 17, 26, 28syl12anc 837 . . . . 5 ((((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → ∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘))
30 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → 𝑔:(1...3)⟶ℙ)
31 4z 12648 . . . . . . . . . . . . . . . . . 18 4 ∈ ℤ
32 fzonel 13709 . . . . . . . . . . . . . . . . . . 19 ¬ 4 ∈ (1..^4)
33 fzoval 13696 . . . . . . . . . . . . . . . . . . . . . . 23 (4 ∈ ℤ → (1..^4) = (1...(4 − 1)))
3431, 33ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (1..^4) = (1...(4 − 1))
35 4cn 12348 . . . . . . . . . . . . . . . . . . . . . . . . 25 4 ∈ ℂ
36 ax-1cn 11210 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℂ
37 3cn 12344 . . . . . . . . . . . . . . . . . . . . . . . . 25 3 ∈ ℂ
3835, 36, 373pm3.2i 1338 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ)
39 3p1e4 12408 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 + 1) = 4
40 subadd2 11509 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) → ((4 − 1) = 3 ↔ (3 + 1) = 4))
4139, 40mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ 3 ∈ ℂ) → (4 − 1) = 3)
4238, 41ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (4 − 1) = 3
4342oveq2i 7441 . . . . . . . . . . . . . . . . . . . . . 22 (1...(4 − 1)) = (1...3)
4434, 43eqtri 2762 . . . . . . . . . . . . . . . . . . . . 21 (1..^4) = (1...3)
4544eqcomi 2743 . . . . . . . . . . . . . . . . . . . 20 (1...3) = (1..^4)
4645eleq2i 2830 . . . . . . . . . . . . . . . . . . 19 (4 ∈ (1...3) ↔ 4 ∈ (1..^4))
4732, 46mtbir 323 . . . . . . . . . . . . . . . . . 18 ¬ 4 ∈ (1...3)
4831, 47pm3.2i 470 . . . . . . . . . . . . . . . . 17 (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3))
4948a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3)))
50 3prm 16727 . . . . . . . . . . . . . . . . 17 3 ∈ ℙ
5150a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → 3 ∈ ℙ)
52 fsnunf 7204 . . . . . . . . . . . . . . . 16 ((𝑔:(1...3)⟶ℙ ∧ (4 ∈ ℤ ∧ ¬ 4 ∈ (1...3)) ∧ 3 ∈ ℙ) → (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
5330, 49, 51, 52syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
54 fzval3 13769 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℤ → (1...4) = (1..^(4 + 1)))
5531, 54ax-mp 5 . . . . . . . . . . . . . . . . 17 (1...4) = (1..^(4 + 1))
56 1z 12644 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℤ
57 1re 11258 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℝ
58 4re 12347 . . . . . . . . . . . . . . . . . . . 20 4 ∈ ℝ
59 1lt4 12439 . . . . . . . . . . . . . . . . . . . 20 1 < 4
6057, 58, 59ltleii 11381 . . . . . . . . . . . . . . . . . . 19 1 ≤ 4
61 eluz2 12881 . . . . . . . . . . . . . . . . . . 19 (4 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 4 ∈ ℤ ∧ 1 ≤ 4))
6256, 31, 60, 61mpbir3an 1340 . . . . . . . . . . . . . . . . . 18 4 ∈ (ℤ‘1)
63 fzosplitsn 13810 . . . . . . . . . . . . . . . . . 18 (4 ∈ (ℤ‘1) → (1..^(4 + 1)) = ((1..^4) ∪ {4}))
6462, 63ax-mp 5 . . . . . . . . . . . . . . . . 17 (1..^(4 + 1)) = ((1..^4) ∪ {4})
6544uneq1i 4173 . . . . . . . . . . . . . . . . 17 ((1..^4) ∪ {4}) = ((1...3) ∪ {4})
6655, 64, 653eqtri 2766 . . . . . . . . . . . . . . . 16 (1...4) = ((1...3) ∪ {4})
6766feq2i 6728 . . . . . . . . . . . . . . 15 ((𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ ↔ (𝑔 ∪ {⟨4, 3⟩}):((1...3) ∪ {4})⟶ℙ)
6853, 67sylibr 234 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ)
69 prmex 16710 . . . . . . . . . . . . . . . 16 ℙ ∈ V
70 ovex 7463 . . . . . . . . . . . . . . . 16 (1...4) ∈ V
7169, 70pm3.2i 470 . . . . . . . . . . . . . . 15 (ℙ ∈ V ∧ (1...4) ∈ V)
72 elmapg 8877 . . . . . . . . . . . . . . 15 ((ℙ ∈ V ∧ (1...4) ∈ V) → ((𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)) ↔ (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ))
7371, 72mp1i 13 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)) ↔ (𝑔 ∪ {⟨4, 3⟩}):(1...4)⟶ℙ))
7468, 73mpbird 257 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)))
7574adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (𝑔 ∪ {⟨4, 3⟩}) ∈ (ℙ ↑m (1...4)))
76 fveq1 6905 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → (𝑓𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
7776adantr 480 . . . . . . . . . . . . . . 15 ((𝑓 = (𝑔 ∪ {⟨4, 3⟩}) ∧ 𝑘 ∈ (1...4)) → (𝑓𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
7877sumeq2dv 15734 . . . . . . . . . . . . . 14 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → Σ𝑘 ∈ (1...4)(𝑓𝑘) = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
7978eqeq2d 2745 . . . . . . . . . . . . 13 (𝑓 = (𝑔 ∪ {⟨4, 3⟩}) → (𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
8079adantl 481 . . . . . . . . . . . 12 ((((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) ∧ 𝑓 = (𝑔 ∪ {⟨4, 3⟩})) → (𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘) ↔ 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
8162a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → 4 ∈ (ℤ‘1))
8266eleq2i 2830 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (1...4) ↔ 𝑘 ∈ ((1...3) ∪ {4}))
83 elun 4162 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ((1...3) ∪ {4}) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 ∈ {4}))
84 velsn 4646 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {4} ↔ 𝑘 = 4)
8584orbi2i 912 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (1...3) ∨ 𝑘 ∈ {4}) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 = 4))
8682, 83, 853bitri 297 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (1...4) ↔ (𝑘 ∈ (1...3) ∨ 𝑘 = 4))
87 elfz2 13550 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (1...3) ↔ ((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (1 ≤ 𝑘𝑘 ≤ 3)))
88 3re 12343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 ∈ ℝ
8988, 58pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (3 ∈ ℝ ∧ 4 ∈ ℝ)
90 3lt4 12437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 < 4
91 ltnle 11337 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((3 ∈ ℝ ∧ 4 ∈ ℝ) → (3 < 4 ↔ ¬ 4 ≤ 3))
9290, 91mpbii 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((3 ∈ ℝ ∧ 4 ∈ ℝ) → ¬ 4 ≤ 3)
9389, 92ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ¬ 4 ≤ 3
94 breq1 5150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑘 = 4 → (𝑘 ≤ 3 ↔ 4 ≤ 3))
9594eqcoms 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (4 = 𝑘 → (𝑘 ≤ 3 ↔ 4 ≤ 3))
9693, 95mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (4 = 𝑘 → ¬ 𝑘 ≤ 3)
9796a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑘 ∈ ℤ → (4 = 𝑘 → ¬ 𝑘 ≤ 3))
9897necon2ad 2952 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑘 ∈ ℤ → (𝑘 ≤ 3 → 4 ≠ 𝑘))
9998adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘 ∈ ℤ → ((1 ≤ 𝑘𝑘 ≤ 3) → 4 ≠ 𝑘))
100993ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((1 ≤ 𝑘𝑘 ≤ 3) → 4 ≠ 𝑘))
101100imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (1 ≤ 𝑘𝑘 ≤ 3)) → 4 ≠ 𝑘)
10287, 101sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...3) → 4 ≠ 𝑘)
103102adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → 4 ≠ 𝑘)
104 fvunsn 7198 . . . . . . . . . . . . . . . . . . . . . . 23 (4 ≠ 𝑘 → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
105103, 104syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
106 ffvelcdm 7100 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:(1...3)⟶ℙ ∧ 𝑘 ∈ (1...3)) → (𝑔𝑘) ∈ ℙ)
107106ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℙ)
108 prmz 16708 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔𝑘) ∈ ℙ → (𝑔𝑘) ∈ ℤ)
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℤ)
110109zcnd 12720 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → (𝑔𝑘) ∈ ℂ)
111105, 110eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ (1...3) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
112111ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...3) → (𝑔:(1...3)⟶ℙ → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
113112adantld 490 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...3) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
114 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 4 → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘4))
11531a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:(1...3)⟶ℙ → 4 ∈ ℤ)
1167a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:(1...3)⟶ℙ → 3 ∈ ℤ)
117 fdm 6745 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔:(1...3)⟶ℙ → dom 𝑔 = (1...3))
118 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (dom 𝑔 = (1...3) → (4 ∈ dom 𝑔 ↔ 4 ∈ (1...3)))
11947, 118mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . 25 (dom 𝑔 = (1...3) → ¬ 4 ∈ dom 𝑔)
120117, 119syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑔:(1...3)⟶ℙ → ¬ 4 ∈ dom 𝑔)
121 fsnunfv 7206 . . . . . . . . . . . . . . . . . . . . . . . 24 ((4 ∈ ℤ ∧ 3 ∈ ℤ ∧ ¬ 4 ∈ dom 𝑔) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
122115, 116, 120, 121syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔:(1...3)⟶ℙ → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
123122adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
124114, 123sylan9eq 2794 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 = 4 ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = 3)
125124, 37eqeltrdi 2846 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 = 4 ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
126125ex 412 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 4 → ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
127113, 126jaoi 857 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ (1...3) ∨ 𝑘 = 4) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
128127com12 32 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑘 ∈ (1...3) ∨ 𝑘 = 4) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
12986, 128biimtrid 242 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → (𝑘 ∈ (1...4) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ))
130129imp 406 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...4)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) ∈ ℂ)
13181, 130, 114fsumm1 15783 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
132131adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
13342eqcomi 2743 . . . . . . . . . . . . . . . . . . . 20 3 = (4 − 1)
134133oveq2i 7441 . . . . . . . . . . . . . . . . . . 19 (1...3) = (1...(4 − 1))
135134a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → (1...3) = (1...(4 − 1)))
136102adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → 4 ≠ 𝑘)
137136, 104syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → ((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑔𝑘))
138137eqcomd 2740 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ 𝑘 ∈ (1...3)) → (𝑔𝑘) = ((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
139135, 138sumeq12dv 15738 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → Σ𝑘 ∈ (1...3)(𝑔𝑘) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
140139eqeq2d 2745 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) ↔ (𝑁 − 3) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘)))
141140biimpa 476 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (𝑁 − 3) = Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
142141eqcomd 2740 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) = (𝑁 − 3))
143142oveq1d 7445 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → (Σ𝑘 ∈ (1...(4 − 1))((𝑔 ∪ {⟨4, 3⟩})‘𝑘) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)))
14431a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → 4 ∈ ℤ)
1457a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → 3 ∈ ℤ)
146120adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ¬ 4 ∈ dom 𝑔)
147144, 145, 146, 121syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑔 ∪ {⟨4, 3⟩})‘4) = 3)
148147oveq2d 7446 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = ((𝑁 − 3) + 3))
149 eluzelcn 12887 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘9) → 𝑁 ∈ ℂ)
15037a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘9) → 3 ∈ ℂ)
151149, 150npcand 11621 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘9) → ((𝑁 − 3) + 3) = 𝑁)
152151adantr 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + 3) = 𝑁)
153148, 152eqtrd 2774 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = 𝑁)
154153adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → ((𝑁 − 3) + ((𝑔 ∪ {⟨4, 3⟩})‘4)) = 𝑁)
155132, 143, 1543eqtrrd 2779 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → 𝑁 = Σ𝑘 ∈ (1...4)((𝑔 ∪ {⟨4, 3⟩})‘𝑘))
15675, 80, 155rspcedvd 3623 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) ∧ (𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘)) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
157156ex 412 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘9) ∧ 𝑔:(1...3)⟶ℙ) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
158157expcom 413 . . . . . . . . 9 (𝑔:(1...3)⟶ℙ → (𝑁 ∈ (ℤ‘9) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
159 elmapi 8887 . . . . . . . . 9 (𝑔 ∈ (ℙ ↑m (1...3)) → 𝑔:(1...3)⟶ℙ)
160158, 159syl11 33 . . . . . . . 8 (𝑁 ∈ (ℤ‘9) → (𝑔 ∈ (ℙ ↑m (1...3)) → ((𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
161160rexlimdv 3150 . . . . . . 7 (𝑁 ∈ (ℤ‘9) → (∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
162161adantr 480 . . . . . 6 ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → (∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
163162ad3antlr 731 . . . . 5 ((((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → (∃𝑔 ∈ (ℙ ↑m (1...3))(𝑁 − 3) = Σ𝑘 ∈ (1...3)(𝑔𝑘) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
16429, 163mpd 15 . . . 4 ((((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) ∧ 𝑜 ∈ GoldbachOddW ) ∧ 𝑁 = (𝑜 + 3)) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
165164rexlimdva2 3154 . . 3 ((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) → (∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
1662, 165mpd 15 . 2 ((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ (𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even )) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
167166ex 412 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ‘9) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cun 3960  {csn 4630  cop 4636   class class class wbr 5147  dom cdm 5688  wf 6558  cfv 6562  (class class class)co 7430  m cmap 8864  cc 11150  cr 11151  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cmin 11489  3c3 12319  4c4 12320  5c5 12321  6c6 12322  9c9 12325  cz 12610  cuz 12875  ...cfz 13543  ..^cfzo 13690  Σcsu 15718  cprime 16704   Even ceven 47548   Odd codd 47549   GoldbachOddW cgbow 47670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-dvds 16287  df-prm 16705  df-even 47550  df-odd 47551  df-gbow 47673
This theorem is referenced by:  wtgoldbnnsum4prm  47726
  Copyright terms: Public domain W3C validator