MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funbrfvb Structured version   Visualization version   GIF version

Theorem funbrfvb 6917
Description: Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
funbrfvb ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem funbrfvb
StepHypRef Expression
1 funfn 6549 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fnbrfvb 6914 . 2 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
31, 2sylanb 581 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  dom cdm 5641  Fun wfun 6508   Fn wfn 6509  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522
This theorem is referenced by:  funbrfv2b  6921  dfimafn  6926  funimass4  6928  eqfunresadj  7338  dcomex  10407  dvidlem  25823  taylthlem1  26288  dfimafnf  32567  funcnvmpt  32598  cantnf2  43321  frege124d  43757  frege129d  43759  ntrclsfv1  44051  ntrneifv1  44075  ntrneifv2  44076
  Copyright terms: Public domain W3C validator