MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funbrfvb Structured version   Visualization version   GIF version

Theorem funbrfvb 6776
Description: Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
funbrfvb ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))

Proof of Theorem funbrfvb
StepHypRef Expression
1 funfn 6419 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fnbrfvb 6774 . 2 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
31, 2sylanb 584 1 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2111   class class class wbr 5062  dom cdm 5560  Fun wfun 6383   Fn wfn 6384  cfv 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5201  ax-nul 5208  ax-pr 5331
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3417  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-nul 4247  df-if 4449  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4829  df-br 5063  df-opab 5125  df-id 5464  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-iota 6347  df-fun 6391  df-fn 6392  df-fv 6397
This theorem is referenced by:  funbrfv2b  6779  dfimafn  6784  funimass4  6786  dcomex  10074  dvidlem  24825  taylthlem1  25278  dfimafnf  30703  funcnvmpt  30737  eqfunresadj  33467  frege124d  41061  frege129d  41063  ntrclsfv1  41357  ntrneifv1  41381  ntrneifv2  41382
  Copyright terms: Public domain W3C validator