Step | Hyp | Ref
| Expression |
1 | | cnf2 22308 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
2 | 1 | 3expa 1116 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
3 | | cnclima 22327 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽)) |
4 | 3 | ralrimiva 3107 |
. . . 4
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽)) |
5 | 4 | adantl 481 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽)) |
6 | 2, 5 | jca 511 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) |
7 | | simprl 767 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) → 𝐹:𝑋⟶𝑌) |
8 | | toponuni 21971 |
. . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
9 | 8 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝑋 = ∪ 𝐽) |
10 | | simplrl 773 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝐹:𝑋⟶𝑌) |
11 | | fimacnv 6606 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑌) = 𝑋) |
12 | 11 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝐹:𝑋⟶𝑌 → 𝑋 = (◡𝐹 “ 𝑌)) |
13 | 10, 12 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝑋 = (◡𝐹 “ 𝑌)) |
14 | 9, 13 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → ∪ 𝐽 = (◡𝐹 “ 𝑌)) |
15 | 14 | difeq1d 4052 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (∪ 𝐽 ∖ (◡𝐹 “ 𝑥)) = ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝑥))) |
16 | | ffun 6587 |
. . . . . . . 8
⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) |
17 | | funcnvcnv 6485 |
. . . . . . . 8
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
18 | | imadif 6502 |
. . . . . . . 8
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑌 ∖ 𝑥)) = ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝑥))) |
19 | 10, 16, 17, 18 | 4syl 19 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ (𝑌 ∖ 𝑥)) = ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝑥))) |
20 | 15, 19 | eqtr4d 2781 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (∪ 𝐽 ∖ (◡𝐹 “ 𝑥)) = (◡𝐹 “ (𝑌 ∖ 𝑥))) |
21 | | imaeq2 5954 |
. . . . . . . 8
⊢ (𝑦 = (𝑌 ∖ 𝑥) → (◡𝐹 “ 𝑦) = (◡𝐹 “ (𝑌 ∖ 𝑥))) |
22 | 21 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑦 = (𝑌 ∖ 𝑥) → ((◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽) ↔ (◡𝐹 “ (𝑌 ∖ 𝑥)) ∈ (Clsd‘𝐽))) |
23 | | simplrr 774 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽)) |
24 | | toponuni 21971 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
25 | 24 | ad3antlr 727 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝑌 = ∪ 𝐾) |
26 | 25 | difeq1d 4052 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (𝑌 ∖ 𝑥) = (∪ 𝐾 ∖ 𝑥)) |
27 | | topontop 21970 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
28 | 27 | ad3antlr 727 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝐾 ∈ Top) |
29 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 |
30 | 29 | opncld 22092 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝑥 ∈ 𝐾) → (∪ 𝐾 ∖ 𝑥) ∈ (Clsd‘𝐾)) |
31 | 28, 30 | sylancom 587 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (∪ 𝐾 ∖ 𝑥) ∈ (Clsd‘𝐾)) |
32 | 26, 31 | eqeltrd 2839 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (𝑌 ∖ 𝑥) ∈ (Clsd‘𝐾)) |
33 | 22, 23, 32 | rspcdva 3554 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ (𝑌 ∖ 𝑥)) ∈ (Clsd‘𝐽)) |
34 | 20, 33 | eqeltrd 2839 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (∪ 𝐽 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽)) |
35 | | topontop 21970 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
36 | 35 | ad3antrrr 726 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝐽 ∈ Top) |
37 | | cnvimass 5978 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
38 | 37, 10 | fssdm 6604 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ⊆ 𝑋) |
39 | 38, 9 | sseqtrd 3957 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) |
40 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
41 | 40 | isopn2 22091 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽))) |
42 | 36, 39, 41 | syl2anc 583 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽))) |
43 | 34, 42 | mpbird 256 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
44 | 43 | ralrimiva 3107 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) |
45 | | iscn 22294 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
46 | 45 | adantr 480 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) |
47 | 7, 44, 46 | mpbir2and 709 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
48 | 6, 47 | impbida 797 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽)))) |