| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnf2 23258 | . . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) | 
| 2 | 1 | 3expa 1118 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) | 
| 3 |  | cnclima 23277 | . . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽)) | 
| 4 | 3 | ralrimiva 3145 | . . . 4
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽)) | 
| 5 | 4 | adantl 481 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽)) | 
| 6 | 2, 5 | jca 511 | . 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) | 
| 7 |  | simprl 770 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) → 𝐹:𝑋⟶𝑌) | 
| 8 |  | toponuni 22921 | . . . . . . . . . 10
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | 
| 9 | 8 | ad3antrrr 730 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝑋 = ∪ 𝐽) | 
| 10 |  | simplrl 776 | . . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝐹:𝑋⟶𝑌) | 
| 11 |  | fimacnv 6757 | . . . . . . . . . . 11
⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑌) = 𝑋) | 
| 12 | 11 | eqcomd 2742 | . . . . . . . . . 10
⊢ (𝐹:𝑋⟶𝑌 → 𝑋 = (◡𝐹 “ 𝑌)) | 
| 13 | 10, 12 | syl 17 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝑋 = (◡𝐹 “ 𝑌)) | 
| 14 | 9, 13 | eqtr3d 2778 | . . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → ∪ 𝐽 = (◡𝐹 “ 𝑌)) | 
| 15 | 14 | difeq1d 4124 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (∪ 𝐽 ∖ (◡𝐹 “ 𝑥)) = ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝑥))) | 
| 16 |  | ffun 6738 | . . . . . . . 8
⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) | 
| 17 |  | funcnvcnv 6632 | . . . . . . . 8
⊢ (Fun
𝐹 → Fun ◡◡𝐹) | 
| 18 |  | imadif 6649 | . . . . . . . 8
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑌 ∖ 𝑥)) = ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝑥))) | 
| 19 | 10, 16, 17, 18 | 4syl 19 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ (𝑌 ∖ 𝑥)) = ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝑥))) | 
| 20 | 15, 19 | eqtr4d 2779 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (∪ 𝐽 ∖ (◡𝐹 “ 𝑥)) = (◡𝐹 “ (𝑌 ∖ 𝑥))) | 
| 21 |  | imaeq2 6073 | . . . . . . . 8
⊢ (𝑦 = (𝑌 ∖ 𝑥) → (◡𝐹 “ 𝑦) = (◡𝐹 “ (𝑌 ∖ 𝑥))) | 
| 22 | 21 | eleq1d 2825 | . . . . . . 7
⊢ (𝑦 = (𝑌 ∖ 𝑥) → ((◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽) ↔ (◡𝐹 “ (𝑌 ∖ 𝑥)) ∈ (Clsd‘𝐽))) | 
| 23 |  | simplrr 777 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽)) | 
| 24 |  | toponuni 22921 | . . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) | 
| 25 | 24 | ad3antlr 731 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝑌 = ∪ 𝐾) | 
| 26 | 25 | difeq1d 4124 | . . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (𝑌 ∖ 𝑥) = (∪ 𝐾 ∖ 𝑥)) | 
| 27 |  | topontop 22920 | . . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | 
| 28 | 27 | ad3antlr 731 | . . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝐾 ∈ Top) | 
| 29 |  | eqid 2736 | . . . . . . . . . 10
⊢ ∪ 𝐾 =
∪ 𝐾 | 
| 30 | 29 | opncld 23042 | . . . . . . . . 9
⊢ ((𝐾 ∈ Top ∧ 𝑥 ∈ 𝐾) → (∪ 𝐾 ∖ 𝑥) ∈ (Clsd‘𝐾)) | 
| 31 | 28, 30 | sylancom 588 | . . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (∪ 𝐾 ∖ 𝑥) ∈ (Clsd‘𝐾)) | 
| 32 | 26, 31 | eqeltrd 2840 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (𝑌 ∖ 𝑥) ∈ (Clsd‘𝐾)) | 
| 33 | 22, 23, 32 | rspcdva 3622 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ (𝑌 ∖ 𝑥)) ∈ (Clsd‘𝐽)) | 
| 34 | 20, 33 | eqeltrd 2840 | . . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (∪ 𝐽 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽)) | 
| 35 |  | topontop 22920 | . . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 36 | 35 | ad3antrrr 730 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → 𝐽 ∈ Top) | 
| 37 |  | cnvimass 6099 | . . . . . . . 8
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 | 
| 38 | 37, 10 | fssdm 6754 | . . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ⊆ 𝑋) | 
| 39 | 38, 9 | sseqtrd 4019 | . . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) | 
| 40 |  | eqid 2736 | . . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 41 | 40 | isopn2 23041 | . . . . . 6
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽))) | 
| 42 | 36, 39, 41 | syl2anc 584 | . . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → ((◡𝐹 “ 𝑥) ∈ 𝐽 ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽))) | 
| 43 | 34, 42 | mpbird 257 | . . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥 ∈ 𝐾) → (◡𝐹 “ 𝑥) ∈ 𝐽) | 
| 44 | 43 | ralrimiva 3145 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) → ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽) | 
| 45 |  | iscn 23244 | . . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | 
| 46 | 45 | adantr 480 | . . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝐾 (◡𝐹 “ 𝑥) ∈ 𝐽))) | 
| 47 | 7, 44, 46 | mpbir2and 713 | . 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽))) → 𝐹 ∈ (𝐽 Cn 𝐾)) | 
| 48 | 6, 47 | impbida 800 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑦) ∈ (Clsd‘𝐽)))) |