MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscncl Structured version   Visualization version   GIF version

Theorem iscncl 22166
Description: A characterization of a continuity function using closed sets. Theorem 1(d) of [BourbakiTop1] p. I.9. (Contributed by FL, 19-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscncl ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
Distinct variable groups:   𝑦,𝐹   𝑦,𝐽   𝑦,𝐾   𝑦,𝑋   𝑦,𝑌

Proof of Theorem iscncl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnf2 22146 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expa 1120 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
3 cnclima 22165 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → (𝐹𝑦) ∈ (Clsd‘𝐽))
43ralrimiva 3105 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))
54adantl 485 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))
62, 5jca 515 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽)))
7 simprl 771 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) → 𝐹:𝑋𝑌)
8 toponuni 21811 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
98ad3antrrr 730 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝑋 = 𝐽)
10 simplrl 777 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝐹:𝑋𝑌)
11 fimacnv 6567 . . . . . . . . . . 11 (𝐹:𝑋𝑌 → (𝐹𝑌) = 𝑋)
1211eqcomd 2743 . . . . . . . . . 10 (𝐹:𝑋𝑌𝑋 = (𝐹𝑌))
1310, 12syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝑋 = (𝐹𝑌))
149, 13eqtr3d 2779 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝐽 = (𝐹𝑌))
1514difeq1d 4036 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ( 𝐽 ∖ (𝐹𝑥)) = ((𝐹𝑌) ∖ (𝐹𝑥)))
16 ffun 6548 . . . . . . . 8 (𝐹:𝑋𝑌 → Fun 𝐹)
17 funcnvcnv 6447 . . . . . . . 8 (Fun 𝐹 → Fun 𝐹)
18 imadif 6464 . . . . . . . 8 (Fun 𝐹 → (𝐹 “ (𝑌𝑥)) = ((𝐹𝑌) ∖ (𝐹𝑥)))
1910, 16, 17, 184syl 19 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝐹 “ (𝑌𝑥)) = ((𝐹𝑌) ∖ (𝐹𝑥)))
2015, 19eqtr4d 2780 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ( 𝐽 ∖ (𝐹𝑥)) = (𝐹 “ (𝑌𝑥)))
21 imaeq2 5925 . . . . . . . 8 (𝑦 = (𝑌𝑥) → (𝐹𝑦) = (𝐹 “ (𝑌𝑥)))
2221eleq1d 2822 . . . . . . 7 (𝑦 = (𝑌𝑥) → ((𝐹𝑦) ∈ (Clsd‘𝐽) ↔ (𝐹 “ (𝑌𝑥)) ∈ (Clsd‘𝐽)))
23 simplrr 778 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))
24 toponuni 21811 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2524ad3antlr 731 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝑌 = 𝐾)
2625difeq1d 4036 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝑌𝑥) = ( 𝐾𝑥))
27 topontop 21810 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
2827ad3antlr 731 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝐾 ∈ Top)
29 eqid 2737 . . . . . . . . . 10 𝐾 = 𝐾
3029opncld 21930 . . . . . . . . 9 ((𝐾 ∈ Top ∧ 𝑥𝐾) → ( 𝐾𝑥) ∈ (Clsd‘𝐾))
3128, 30sylancom 591 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ( 𝐾𝑥) ∈ (Clsd‘𝐾))
3226, 31eqeltrd 2838 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝑌𝑥) ∈ (Clsd‘𝐾))
3322, 23, 32rspcdva 3539 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝐹 “ (𝑌𝑥)) ∈ (Clsd‘𝐽))
3420, 33eqeltrd 2838 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ( 𝐽 ∖ (𝐹𝑥)) ∈ (Clsd‘𝐽))
35 topontop 21810 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3635ad3antrrr 730 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → 𝐽 ∈ Top)
37 cnvimass 5949 . . . . . . . 8 (𝐹𝑥) ⊆ dom 𝐹
3837, 10fssdm 6565 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ 𝑋)
3938, 9sseqtrd 3941 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝐹𝑥) ⊆ 𝐽)
40 eqid 2737 . . . . . . 7 𝐽 = 𝐽
4140isopn2 21929 . . . . . 6 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ 𝐽 ↔ ( 𝐽 ∖ (𝐹𝑥)) ∈ (Clsd‘𝐽)))
4236, 39, 41syl2anc 587 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → ((𝐹𝑥) ∈ 𝐽 ↔ ( 𝐽 ∖ (𝐹𝑥)) ∈ (Clsd‘𝐽)))
4334, 42mpbird 260 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) ∧ 𝑥𝐾) → (𝐹𝑥) ∈ 𝐽)
4443ralrimiva 3105 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) → ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)
45 iscn 22132 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
4645adantr 484 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
477, 44, 46mpbir2and 713 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))) → 𝐹 ∈ (𝐽 Cn 𝐾))
486, 47impbida 801 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  cdif 3863  wss 3866   cuni 4819  ccnv 5550  cima 5554  Fun wfun 6374  wf 6376  cfv 6380  (class class class)co 7213  Topctop 21790  TopOnctopon 21807  Clsdccld 21913   Cn ccn 22121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-top 21791  df-topon 21808  df-cld 21916  df-cn 22124
This theorem is referenced by:  cncls2  22170  paste  22191  cmphaushmeo  22697  ubthlem1  28951  ubthlem2  28952  rhmpreimacn  31549
  Copyright terms: Public domain W3C validator