MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoprest Structured version   Visualization version   GIF version

Theorem qtoprest 23630
Description: If 𝐴 is a saturated open or closed set (where saturated means that 𝐴 = (𝐹𝑈) for some 𝑈), then the restriction of the quotient map 𝐹 to 𝐴 is a quotient map. (Contributed by Mario Carneiro, 24-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
qtoprest.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
qtoprest.3 (𝜑𝐹:𝑋onto𝑌)
qtoprest.4 (𝜑𝑈𝑌)
qtoprest.5 (𝜑𝐴 = (𝐹𝑈))
qtoprest.6 (𝜑 → (𝐴𝐽𝐴 ∈ (Clsd‘𝐽)))
Assertion
Ref Expression
qtoprest (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽t 𝐴) qTop (𝐹𝐴)))

Proof of Theorem qtoprest
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qtoprest.2 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 qtoprest.3 . . . . . . 7 (𝜑𝐹:𝑋onto𝑌)
3 fofn 6737 . . . . . . 7 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
42, 3syl 17 . . . . . 6 (𝜑𝐹 Fn 𝑋)
5 qtopid 23618 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
61, 4, 5syl2anc 584 . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
7 qtoprest.5 . . . . . . 7 (𝜑𝐴 = (𝐹𝑈))
8 cnvimass 6031 . . . . . . . 8 (𝐹𝑈) ⊆ dom 𝐹
94fndmd 6586 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝑋)
108, 9sseqtrid 3977 . . . . . . 7 (𝜑 → (𝐹𝑈) ⊆ 𝑋)
117, 10eqsstrd 3969 . . . . . 6 (𝜑𝐴𝑋)
12 toponuni 22827 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
131, 12syl 17 . . . . . 6 (𝜑𝑋 = 𝐽)
1411, 13sseqtrd 3971 . . . . 5 (𝜑𝐴 𝐽)
15 eqid 2731 . . . . . 6 𝐽 = 𝐽
1615cnrest 23198 . . . . 5 ((𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ∧ 𝐴 𝐽) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐽 qTop 𝐹)))
176, 14, 16syl2anc 584 . . . 4 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐽 qTop 𝐹)))
18 qtoptopon 23617 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
191, 2, 18syl2anc 584 . . . . 5 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
20 df-ima 5629 . . . . . . 7 (𝐹𝐴) = ran (𝐹𝐴)
217imaeq2d 6009 . . . . . . . 8 (𝜑 → (𝐹𝐴) = (𝐹 “ (𝐹𝑈)))
22 qtoprest.4 . . . . . . . . 9 (𝜑𝑈𝑌)
23 foimacnv 6780 . . . . . . . . 9 ((𝐹:𝑋onto𝑌𝑈𝑌) → (𝐹 “ (𝐹𝑈)) = 𝑈)
242, 22, 23syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 “ (𝐹𝑈)) = 𝑈)
2521, 24eqtrd 2766 . . . . . . 7 (𝜑 → (𝐹𝐴) = 𝑈)
2620, 25eqtr3id 2780 . . . . . 6 (𝜑 → ran (𝐹𝐴) = 𝑈)
27 eqimss 3993 . . . . . 6 (ran (𝐹𝐴) = 𝑈 → ran (𝐹𝐴) ⊆ 𝑈)
2826, 27syl 17 . . . . 5 (𝜑 → ran (𝐹𝐴) ⊆ 𝑈)
29 cnrest2 23199 . . . . 5 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ ran (𝐹𝐴) ⊆ 𝑈𝑈𝑌) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐽 qTop 𝐹)) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈))))
3019, 28, 22, 29syl3anc 1373 . . . 4 (𝜑 → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐽 qTop 𝐹)) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈))))
3117, 30mpbid 232 . . 3 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)))
32 resttopon 23074 . . . 4 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝑈𝑌) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈))
3319, 22, 32syl2anc 584 . . 3 (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈))
34 qtopss 23628 . . 3 (((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)) ∧ ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) ∧ ran (𝐹𝐴) = 𝑈) → ((𝐽 qTop 𝐹) ↾t 𝑈) ⊆ ((𝐽t 𝐴) qTop (𝐹𝐴)))
3531, 33, 26, 34syl3anc 1373 . 2 (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) ⊆ ((𝐽t 𝐴) qTop (𝐹𝐴)))
36 resttopon 23074 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
371, 11, 36syl2anc 584 . . . . 5 (𝜑 → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
38 fnfun 6581 . . . . . . . 8 (𝐹 Fn 𝑋 → Fun 𝐹)
394, 38syl 17 . . . . . . 7 (𝜑 → Fun 𝐹)
4011, 9sseqtrrd 3972 . . . . . . 7 (𝜑𝐴 ⊆ dom 𝐹)
41 fores 6745 . . . . . . 7 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
4239, 40, 41syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝐴):𝐴onto→(𝐹𝐴))
43 foeq3 6733 . . . . . . 7 ((𝐹𝐴) = 𝑈 → ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto𝑈))
4425, 43syl 17 . . . . . 6 (𝜑 → ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto𝑈))
4542, 44mpbid 232 . . . . 5 (𝜑 → (𝐹𝐴):𝐴onto𝑈)
46 elqtop3 23616 . . . . 5 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ (𝐹𝐴):𝐴onto𝑈) → (𝑥 ∈ ((𝐽t 𝐴) qTop (𝐹𝐴)) ↔ (𝑥𝑈 ∧ ((𝐹𝐴) “ 𝑥) ∈ (𝐽t 𝐴))))
4737, 45, 46syl2anc 584 . . . 4 (𝜑 → (𝑥 ∈ ((𝐽t 𝐴) qTop (𝐹𝐴)) ↔ (𝑥𝑈 ∧ ((𝐹𝐴) “ 𝑥) ∈ (𝐽t 𝐴))))
48 cnvresima 6177 . . . . . . . 8 ((𝐹𝐴) “ 𝑥) = ((𝐹𝑥) ∩ 𝐴)
49 imass2 6051 . . . . . . . . . . 11 (𝑥𝑈 → (𝐹𝑥) ⊆ (𝐹𝑈))
5049adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝑈) → (𝐹𝑥) ⊆ (𝐹𝑈))
517adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝐴 = (𝐹𝑈))
5250, 51sseqtrrd 3972 . . . . . . . . 9 ((𝜑𝑥𝑈) → (𝐹𝑥) ⊆ 𝐴)
53 dfss2 3920 . . . . . . . . 9 ((𝐹𝑥) ⊆ 𝐴 ↔ ((𝐹𝑥) ∩ 𝐴) = (𝐹𝑥))
5452, 53sylib 218 . . . . . . . 8 ((𝜑𝑥𝑈) → ((𝐹𝑥) ∩ 𝐴) = (𝐹𝑥))
5548, 54eqtrid 2778 . . . . . . 7 ((𝜑𝑥𝑈) → ((𝐹𝐴) “ 𝑥) = (𝐹𝑥))
5655eleq1d 2816 . . . . . 6 ((𝜑𝑥𝑈) → (((𝐹𝐴) “ 𝑥) ∈ (𝐽t 𝐴) ↔ (𝐹𝑥) ∈ (𝐽t 𝐴)))
57 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑥𝑈)
58 dfss2 3920 . . . . . . . . . 10 (𝑥𝑈 ↔ (𝑥𝑈) = 𝑥)
5957, 58sylib 218 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → (𝑥𝑈) = 𝑥)
60 topontop 22826 . . . . . . . . . . . 12 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → (𝐽 qTop 𝐹) ∈ Top)
6119, 60syl 17 . . . . . . . . . . 11 (𝜑 → (𝐽 qTop 𝐹) ∈ Top)
6261ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → (𝐽 qTop 𝐹) ∈ Top)
63 toponmax 22839 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
641, 63syl 17 . . . . . . . . . . . . 13 (𝜑𝑋𝐽)
65 focdmex 7888 . . . . . . . . . . . . 13 (𝑋𝐽 → (𝐹:𝑋onto𝑌𝑌 ∈ V))
6664, 2, 65sylc 65 . . . . . . . . . . . 12 (𝜑𝑌 ∈ V)
6766, 22ssexd 5262 . . . . . . . . . . 11 (𝜑𝑈 ∈ V)
6867ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑈 ∈ V)
6922ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑈𝑌)
7057, 69sstrd 3945 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑥𝑌)
71 topontop 22826 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
721, 71syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ Top)
73 restopn2 23090 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ((𝐹𝑥) ∈ (𝐽t 𝐴) ↔ ((𝐹𝑥) ∈ 𝐽 ∧ (𝐹𝑥) ⊆ 𝐴)))
7472, 73sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝐴𝐽) → ((𝐹𝑥) ∈ (𝐽t 𝐴) ↔ ((𝐹𝑥) ∈ 𝐽 ∧ (𝐹𝑥) ⊆ 𝐴)))
7574simprbda 498 . . . . . . . . . . . . 13 (((𝜑𝐴𝐽) ∧ (𝐹𝑥) ∈ (𝐽t 𝐴)) → (𝐹𝑥) ∈ 𝐽)
7675adantrl 716 . . . . . . . . . . . 12 (((𝜑𝐴𝐽) ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) → (𝐹𝑥) ∈ 𝐽)
7776an32s 652 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → (𝐹𝑥) ∈ 𝐽)
78 elqtop3 23616 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
791, 2, 78syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
8079ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
8170, 77, 80mpbir2and 713 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑥 ∈ (𝐽 qTop 𝐹))
82 elrestr 17329 . . . . . . . . . 10 (((𝐽 qTop 𝐹) ∈ Top ∧ 𝑈 ∈ V ∧ 𝑥 ∈ (𝐽 qTop 𝐹)) → (𝑥𝑈) ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))
8362, 68, 81, 82syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → (𝑥𝑈) ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))
8459, 83eqeltrrd 2832 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))
8533ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈))
86 toponuni 22827 . . . . . . . . . . . 12 (((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) → 𝑈 = ((𝐽 qTop 𝐹) ↾t 𝑈))
8785, 86syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 = ((𝐽 qTop 𝐹) ↾t 𝑈))
8887difeq1d 4075 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈𝑥) = ( ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥))
8922ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈𝑌)
9019ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
91 toponuni 22827 . . . . . . . . . . . . 13 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → 𝑌 = (𝐽 qTop 𝐹))
9290, 91syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑌 = (𝐽 qTop 𝐹))
9389, 92sseqtrd 3971 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 (𝐽 qTop 𝐹))
9489ssdifssd 4097 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈𝑥) ⊆ 𝑌)
9539ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → Fun 𝐹)
96 funcnvcnv 6548 . . . . . . . . . . . . . . 15 (Fun 𝐹 → Fun 𝐹)
97 imadif 6565 . . . . . . . . . . . . . . 15 (Fun 𝐹 → (𝐹 “ (𝑈𝑥)) = ((𝐹𝑈) ∖ (𝐹𝑥)))
9895, 96, 973syl 18 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝑈𝑥)) = ((𝐹𝑈) ∖ (𝐹𝑥)))
997ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 = (𝐹𝑈))
10099difeq1d 4075 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (𝐹𝑥)) = ((𝐹𝑈) ∖ (𝐹𝑥)))
10198, 100eqtr4d 2769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝑈𝑥)) = (𝐴 ∖ (𝐹𝑥)))
102 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ (Clsd‘𝐽))
10337ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
104 toponuni 22827 . . . . . . . . . . . . . . . . 17 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = (𝐽t 𝐴))
105103, 104syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 = (𝐽t 𝐴))
106105difeq1d 4075 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (𝐹𝑥)) = ( (𝐽t 𝐴) ∖ (𝐹𝑥)))
107 topontop 22826 . . . . . . . . . . . . . . . . 17 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → (𝐽t 𝐴) ∈ Top)
108103, 107syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ Top)
109 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (𝐽t 𝐴))
110 eqid 2731 . . . . . . . . . . . . . . . . 17 (𝐽t 𝐴) = (𝐽t 𝐴)
111110opncld 22946 . . . . . . . . . . . . . . . 16 (((𝐽t 𝐴) ∈ Top ∧ (𝐹𝑥) ∈ (𝐽t 𝐴)) → ( (𝐽t 𝐴) ∖ (𝐹𝑥)) ∈ (Clsd‘(𝐽t 𝐴)))
112108, 109, 111syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ( (𝐽t 𝐴) ∖ (𝐹𝑥)) ∈ (Clsd‘(𝐽t 𝐴)))
113106, 112eqeltrd 2831 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (𝐹𝑥)) ∈ (Clsd‘(𝐽t 𝐴)))
114 restcldr 23087 . . . . . . . . . . . . . 14 ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴 ∖ (𝐹𝑥)) ∈ (Clsd‘(𝐽t 𝐴))) → (𝐴 ∖ (𝐹𝑥)) ∈ (Clsd‘𝐽))
115102, 113, 114syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (𝐹𝑥)) ∈ (Clsd‘𝐽))
116101, 115eqeltrd 2831 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝑈𝑥)) ∈ (Clsd‘𝐽))
117 qtopcld 23626 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝑈𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝑈𝑥)) ∈ (Clsd‘𝐽))))
1181, 2, 117syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑈𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝑈𝑥)) ∈ (Clsd‘𝐽))))
119118ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝑈𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝑈𝑥)) ∈ (Clsd‘𝐽))))
12094, 116, 119mpbir2and 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)))
121 difssd 4087 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈𝑥) ⊆ 𝑈)
122 eqid 2731 . . . . . . . . . . . 12 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
123122restcldi 23086 . . . . . . . . . . 11 ((𝑈 (𝐽 qTop 𝐹) ∧ (𝑈𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ∧ (𝑈𝑥) ⊆ 𝑈) → (𝑈𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))
12493, 120, 121, 123syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))
12588, 124eqeltrrd 2832 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ( ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))
126 topontop 22826 . . . . . . . . . . 11 (((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top)
12785, 126syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top)
128 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥𝑈)
129128, 87sseqtrd 3971 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ((𝐽 qTop 𝐹) ↾t 𝑈))
130 eqid 2731 . . . . . . . . . . 11 ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽 qTop 𝐹) ↾t 𝑈)
131130isopn2 22945 . . . . . . . . . 10 ((((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top ∧ 𝑥 ((𝐽 qTop 𝐹) ↾t 𝑈)) → (𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈) ↔ ( ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))))
132127, 129, 131syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈) ↔ ( ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))))
133125, 132mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))
134 qtoprest.6 . . . . . . . . 9 (𝜑 → (𝐴𝐽𝐴 ∈ (Clsd‘𝐽)))
135134adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) → (𝐴𝐽𝐴 ∈ (Clsd‘𝐽)))
13684, 133, 135mpjaodan 960 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))
137136expr 456 . . . . . 6 ((𝜑𝑥𝑈) → ((𝐹𝑥) ∈ (𝐽t 𝐴) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)))
13856, 137sylbid 240 . . . . 5 ((𝜑𝑥𝑈) → (((𝐹𝐴) “ 𝑥) ∈ (𝐽t 𝐴) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)))
139138expimpd 453 . . . 4 (𝜑 → ((𝑥𝑈 ∧ ((𝐹𝐴) “ 𝑥) ∈ (𝐽t 𝐴)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)))
14047, 139sylbid 240 . . 3 (𝜑 → (𝑥 ∈ ((𝐽t 𝐴) qTop (𝐹𝐴)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)))
141140ssrdv 3940 . 2 (𝜑 → ((𝐽t 𝐴) qTop (𝐹𝐴)) ⊆ ((𝐽 qTop 𝐹) ↾t 𝑈))
14235, 141eqssd 3952 1 (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽t 𝐴) qTop (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3899  cin 3901  wss 3902   cuni 4859  ccnv 5615  dom cdm 5616  ran crn 5617  cres 5618  cima 5619  Fun wfun 6475   Fn wfn 6476  ontowfo 6479  cfv 6481  (class class class)co 7346  t crest 17321   qTop cqtop 17404  Topctop 22806  TopOnctopon 22823  Clsdccld 22929   Cn ccn 23137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-map 8752  df-en 8870  df-fin 8873  df-fi 9295  df-rest 17323  df-topgen 17344  df-qtop 17408  df-top 22807  df-topon 22824  df-bases 22859  df-cld 22932  df-cn 23140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator