Step | Hyp | Ref
| Expression |
1 | | qtoprest.2 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | | qtoprest.3 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
3 | | fofn 6674 |
. . . . . . 7
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) |
4 | 2, 3 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝑋) |
5 | | qtopid 22764 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
6 | 1, 4, 5 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
7 | | qtoprest.5 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = (◡𝐹 “ 𝑈)) |
8 | | cnvimass 5978 |
. . . . . . . 8
⊢ (◡𝐹 “ 𝑈) ⊆ dom 𝐹 |
9 | 4 | fndmd 6522 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 = 𝑋) |
10 | 8, 9 | sseqtrid 3969 |
. . . . . . 7
⊢ (𝜑 → (◡𝐹 “ 𝑈) ⊆ 𝑋) |
11 | 7, 10 | eqsstrd 3955 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
12 | | toponuni 21971 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
13 | 1, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
14 | 11, 13 | sseqtrd 3957 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) |
15 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
16 | 15 | cnrest 22344 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ∧ 𝐴 ⊆ ∪ 𝐽) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹))) |
17 | 6, 14, 16 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹))) |
18 | | qtoptopon 22763 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
19 | 1, 2, 18 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
20 | | df-ima 5593 |
. . . . . . 7
⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) |
21 | 7 | imaeq2d 5958 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 “ 𝐴) = (𝐹 “ (◡𝐹 “ 𝑈))) |
22 | | qtoprest.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ⊆ 𝑌) |
23 | | foimacnv 6717 |
. . . . . . . . 9
⊢ ((𝐹:𝑋–onto→𝑌 ∧ 𝑈 ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ 𝑈)) = 𝑈) |
24 | 2, 22, 23 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝑈)) = 𝑈) |
25 | 21, 24 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → (𝐹 “ 𝐴) = 𝑈) |
26 | 20, 25 | eqtr3id 2793 |
. . . . . 6
⊢ (𝜑 → ran (𝐹 ↾ 𝐴) = 𝑈) |
27 | | eqimss 3973 |
. . . . . 6
⊢ (ran
(𝐹 ↾ 𝐴) = 𝑈 → ran (𝐹 ↾ 𝐴) ⊆ 𝑈) |
28 | 26, 27 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝐹 ↾ 𝐴) ⊆ 𝑈) |
29 | | cnrest2 22345 |
. . . . 5
⊢ (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ ran (𝐹 ↾ 𝐴) ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑌) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹)) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)))) |
30 | 19, 28, 22, 29 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐽 qTop 𝐹)) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)))) |
31 | 17, 30 | mpbid 231 |
. . 3
⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈))) |
32 | | resttopon 22220 |
. . . 4
⊢ (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝑈 ⊆ 𝑌) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈)) |
33 | 19, 22, 32 | syl2anc 583 |
. . 3
⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈)) |
34 | | qtopss 22774 |
. . 3
⊢ (((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)) ∧ ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) ∧ ran (𝐹 ↾ 𝐴) = 𝑈) → ((𝐽 qTop 𝐹) ↾t 𝑈) ⊆ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) |
35 | 31, 33, 26, 34 | syl3anc 1369 |
. 2
⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) ⊆ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) |
36 | | resttopon 22220 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ⊆ 𝑋) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
37 | 1, 11, 36 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
38 | | fnfun 6517 |
. . . . . . . 8
⊢ (𝐹 Fn 𝑋 → Fun 𝐹) |
39 | 4, 38 | syl 17 |
. . . . . . 7
⊢ (𝜑 → Fun 𝐹) |
40 | 11, 9 | sseqtrrd 3958 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
41 | | fores 6682 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
42 | 39, 40, 41 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
43 | | foeq3 6670 |
. . . . . . 7
⊢ ((𝐹 “ 𝐴) = 𝑈 → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→𝑈)) |
44 | 25, 43 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→𝑈)) |
45 | 42, 44 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→𝑈) |
46 | | elqtop3 22762 |
. . . . 5
⊢ (((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) ∧ (𝐹 ↾ 𝐴):𝐴–onto→𝑈) → (𝑥 ∈ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) ↔ (𝑥 ⊆ 𝑈 ∧ (◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴)))) |
47 | 37, 45, 46 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) ↔ (𝑥 ⊆ 𝑈 ∧ (◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴)))) |
48 | | cnvresima 6122 |
. . . . . . . 8
⊢ (◡(𝐹 ↾ 𝐴) “ 𝑥) = ((◡𝐹 “ 𝑥) ∩ 𝐴) |
49 | | imass2 5999 |
. . . . . . . . . . 11
⊢ (𝑥 ⊆ 𝑈 → (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑈)) |
50 | 49 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → (◡𝐹 “ 𝑥) ⊆ (◡𝐹 “ 𝑈)) |
51 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → 𝐴 = (◡𝐹 “ 𝑈)) |
52 | 50, 51 | sseqtrrd 3958 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → (◡𝐹 “ 𝑥) ⊆ 𝐴) |
53 | | df-ss 3900 |
. . . . . . . . 9
⊢ ((◡𝐹 “ 𝑥) ⊆ 𝐴 ↔ ((◡𝐹 “ 𝑥) ∩ 𝐴) = (◡𝐹 “ 𝑥)) |
54 | 52, 53 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡𝐹 “ 𝑥) ∩ 𝐴) = (◡𝐹 “ 𝑥)) |
55 | 48, 54 | eqtrid 2790 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → (◡(𝐹 ↾ 𝐴) “ 𝑥) = (◡𝐹 “ 𝑥)) |
56 | 55 | eleq1d 2823 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴) ↔ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) |
57 | | simplrl 773 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ⊆ 𝑈) |
58 | | df-ss 3900 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝑈 ↔ (𝑥 ∩ 𝑈) = 𝑥) |
59 | 57, 58 | sylib 217 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝑥 ∩ 𝑈) = 𝑥) |
60 | | topontop 21970 |
. . . . . . . . . . . 12
⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → (𝐽 qTop 𝐹) ∈ Top) |
61 | 19, 60 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Top) |
62 | 61 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝐽 qTop 𝐹) ∈ Top) |
63 | | toponmax 21983 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
64 | 1, 63 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
65 | | fornex 7772 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝐽 → (𝐹:𝑋–onto→𝑌 → 𝑌 ∈ V)) |
66 | 64, 2, 65 | sylc 65 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ V) |
67 | 66, 22 | ssexd 5243 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ V) |
68 | 67 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑈 ∈ V) |
69 | 22 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑈 ⊆ 𝑌) |
70 | 57, 69 | sstrd 3927 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ⊆ 𝑌) |
71 | | topontop 21970 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
72 | 1, 71 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈ Top) |
73 | | restopn2 22236 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → ((◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴) ↔ ((◡𝐹 “ 𝑥) ∈ 𝐽 ∧ (◡𝐹 “ 𝑥) ⊆ 𝐴))) |
74 | 72, 73 | sylan 579 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐽) → ((◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴) ↔ ((◡𝐹 “ 𝑥) ∈ 𝐽 ∧ (◡𝐹 “ 𝑥) ⊆ 𝐴))) |
75 | 74 | simprbda 498 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝐴 ∈ 𝐽) ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴)) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
76 | 75 | adantrl 712 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝐴 ∈ 𝐽) ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
77 | 76 | an32s 648 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (◡𝐹 “ 𝑥) ∈ 𝐽) |
78 | | elqtop3 22762 |
. . . . . . . . . . . . 13
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
79 | 1, 2, 78 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
80 | 79 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑥) ∈ 𝐽))) |
81 | 70, 77, 80 | mpbir2and 709 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ∈ (𝐽 qTop 𝐹)) |
82 | | elrestr 17056 |
. . . . . . . . . 10
⊢ (((𝐽 qTop 𝐹) ∈ Top ∧ 𝑈 ∈ V ∧ 𝑥 ∈ (𝐽 qTop 𝐹)) → (𝑥 ∩ 𝑈) ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
83 | 62, 68, 81, 82 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → (𝑥 ∩ 𝑈) ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
84 | 59, 83 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ 𝐽) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
85 | 33 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈)) |
86 | | toponuni 21971 |
. . . . . . . . . . . 12
⊢ (((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) → 𝑈 = ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 = ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
88 | 87 | difeq1d 4052 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) = (∪ ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥)) |
89 | 22 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ 𝑌) |
90 | 19 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
91 | | toponuni 21971 |
. . . . . . . . . . . . 13
⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
93 | 89, 92 | sseqtrd 3957 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ ∪ (𝐽 qTop 𝐹)) |
94 | 89 | ssdifssd 4073 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ⊆ 𝑌) |
95 | 39 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → Fun 𝐹) |
96 | | funcnvcnv 6485 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
97 | | imadif 6502 |
. . . . . . . . . . . . . . 15
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑈 ∖ 𝑥)) = ((◡𝐹 “ 𝑈) ∖ (◡𝐹 “ 𝑥))) |
98 | 95, 96, 97 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝑈 ∖ 𝑥)) = ((◡𝐹 “ 𝑈) ∖ (◡𝐹 “ 𝑥))) |
99 | 7 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 = (◡𝐹 “ 𝑈)) |
100 | 99 | difeq1d 4052 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) = ((◡𝐹 “ 𝑈) ∖ (◡𝐹 “ 𝑥))) |
101 | 98, 100 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝑈 ∖ 𝑥)) = (𝐴 ∖ (◡𝐹 “ 𝑥))) |
102 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ (Clsd‘𝐽)) |
103 | 37 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴)) |
104 | | toponuni 21971 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 = ∪ (𝐽 ↾t 𝐴)) |
106 | 105 | difeq1d 4052 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) = (∪ (𝐽 ↾t 𝐴) ∖ (◡𝐹 “ 𝑥))) |
107 | | topontop 21970 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘𝐴) → (𝐽 ↾t 𝐴) ∈ Top) |
108 | 103, 107 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 ↾t 𝐴) ∈ Top) |
109 | | simplrr 774 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴)) |
110 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ (𝐽
↾t 𝐴) =
∪ (𝐽 ↾t 𝐴) |
111 | 110 | opncld 22092 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐽 ↾t 𝐴) ∈ Top ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴)) → (∪
(𝐽 ↾t
𝐴) ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
112 | 108, 109,
111 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (∪
(𝐽 ↾t
𝐴) ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
113 | 106, 112 | eqeltrd 2839 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) |
114 | | restcldr 22233 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘(𝐽 ↾t 𝐴))) → (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽)) |
115 | 102, 113,
114 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (◡𝐹 “ 𝑥)) ∈ (Clsd‘𝐽)) |
116 | 101, 115 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)) |
117 | | qtopcld 22772 |
. . . . . . . . . . . . . 14
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ((𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈 ∖ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)))) |
118 | 1, 2, 117 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈 ∖ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)))) |
119 | 118 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈 ∖ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑈 ∖ 𝑥)) ∈ (Clsd‘𝐽)))) |
120 | 94, 116, 119 | mpbir2and 709 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹))) |
121 | | difssd 4063 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ⊆ 𝑈) |
122 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ∪ (𝐽
qTop 𝐹) = ∪ (𝐽
qTop 𝐹) |
123 | 122 | restcldi 22232 |
. . . . . . . . . . 11
⊢ ((𝑈 ⊆ ∪ (𝐽
qTop 𝐹) ∧ (𝑈 ∖ 𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ∧ (𝑈 ∖ 𝑥) ⊆ 𝑈) → (𝑈 ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))) |
124 | 93, 120, 121, 123 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈 ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))) |
125 | 88, 124 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (∪
((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))) |
126 | | topontop 21970 |
. . . . . . . . . . 11
⊢ (((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top) |
127 | 85, 126 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top) |
128 | | simplrl 773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ 𝑈) |
129 | 128, 87 | sseqtrd 3957 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ⊆ ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
130 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ ((𝐽
qTop 𝐹) ↾t
𝑈) = ∪ ((𝐽
qTop 𝐹) ↾t
𝑈) |
131 | 130 | isopn2 22091 |
. . . . . . . . . 10
⊢ ((((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top ∧ 𝑥 ⊆ ∪ ((𝐽 qTop 𝐹) ↾t 𝑈)) → (𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈) ↔ (∪
((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))) |
132 | 127, 129,
131 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈) ↔ (∪
((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))) |
133 | 125, 132 | mpbird 256 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
134 | | qtoprest.6 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ 𝐽 ∨ 𝐴 ∈ (Clsd‘𝐽))) |
135 | 134 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) → (𝐴 ∈ 𝐽 ∨ 𝐴 ∈ (Clsd‘𝐽))) |
136 | 84, 133, 135 | mpjaodan 955 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑈 ∧ (◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴))) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
137 | 136 | expr 456 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡𝐹 “ 𝑥) ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
138 | 56, 137 | sylbid 239 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑈) → ((◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
139 | 138 | expimpd 453 |
. . . 4
⊢ (𝜑 → ((𝑥 ⊆ 𝑈 ∧ (◡(𝐹 ↾ 𝐴) “ 𝑥) ∈ (𝐽 ↾t 𝐴)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
140 | 47, 139 | sylbid 239 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))) |
141 | 140 | ssrdv 3923 |
. 2
⊢ (𝜑 → ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴)) ⊆ ((𝐽 qTop 𝐹) ↾t 𝑈)) |
142 | 35, 141 | eqssd 3934 |
1
⊢ (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽 ↾t 𝐴) qTop (𝐹 ↾ 𝐴))) |