MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoprest Structured version   Visualization version   GIF version

Theorem qtoprest 23633
Description: If 𝐴 is a saturated open or closed set (where saturated means that 𝐴 = (𝐹𝑈) for some 𝑈), then the restriction of the quotient map 𝐹 to 𝐴 is a quotient map. (Contributed by Mario Carneiro, 24-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
qtoprest.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
qtoprest.3 (𝜑𝐹:𝑋onto𝑌)
qtoprest.4 (𝜑𝑈𝑌)
qtoprest.5 (𝜑𝐴 = (𝐹𝑈))
qtoprest.6 (𝜑 → (𝐴𝐽𝐴 ∈ (Clsd‘𝐽)))
Assertion
Ref Expression
qtoprest (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽t 𝐴) qTop (𝐹𝐴)))

Proof of Theorem qtoprest
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qtoprest.2 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 qtoprest.3 . . . . . . 7 (𝜑𝐹:𝑋onto𝑌)
3 fofn 6742 . . . . . . 7 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
42, 3syl 17 . . . . . 6 (𝜑𝐹 Fn 𝑋)
5 qtopid 23621 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
61, 4, 5syl2anc 584 . . . . 5 (𝜑𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
7 qtoprest.5 . . . . . . 7 (𝜑𝐴 = (𝐹𝑈))
8 cnvimass 6035 . . . . . . . 8 (𝐹𝑈) ⊆ dom 𝐹
94fndmd 6591 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝑋)
108, 9sseqtrid 3973 . . . . . . 7 (𝜑 → (𝐹𝑈) ⊆ 𝑋)
117, 10eqsstrd 3965 . . . . . 6 (𝜑𝐴𝑋)
12 toponuni 22830 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
131, 12syl 17 . . . . . 6 (𝜑𝑋 = 𝐽)
1411, 13sseqtrd 3967 . . . . 5 (𝜑𝐴 𝐽)
15 eqid 2733 . . . . . 6 𝐽 = 𝐽
1615cnrest 23201 . . . . 5 ((𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ∧ 𝐴 𝐽) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐽 qTop 𝐹)))
176, 14, 16syl2anc 584 . . . 4 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐽 qTop 𝐹)))
18 qtoptopon 23620 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
191, 2, 18syl2anc 584 . . . . 5 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
20 df-ima 5632 . . . . . . 7 (𝐹𝐴) = ran (𝐹𝐴)
217imaeq2d 6013 . . . . . . . 8 (𝜑 → (𝐹𝐴) = (𝐹 “ (𝐹𝑈)))
22 qtoprest.4 . . . . . . . . 9 (𝜑𝑈𝑌)
23 foimacnv 6785 . . . . . . . . 9 ((𝐹:𝑋onto𝑌𝑈𝑌) → (𝐹 “ (𝐹𝑈)) = 𝑈)
242, 22, 23syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 “ (𝐹𝑈)) = 𝑈)
2521, 24eqtrd 2768 . . . . . . 7 (𝜑 → (𝐹𝐴) = 𝑈)
2620, 25eqtr3id 2782 . . . . . 6 (𝜑 → ran (𝐹𝐴) = 𝑈)
27 eqimss 3989 . . . . . 6 (ran (𝐹𝐴) = 𝑈 → ran (𝐹𝐴) ⊆ 𝑈)
2826, 27syl 17 . . . . 5 (𝜑 → ran (𝐹𝐴) ⊆ 𝑈)
29 cnrest2 23202 . . . . 5 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ ran (𝐹𝐴) ⊆ 𝑈𝑈𝑌) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐽 qTop 𝐹)) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈))))
3019, 28, 22, 29syl3anc 1373 . . . 4 (𝜑 → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐽 qTop 𝐹)) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈))))
3117, 30mpbid 232 . . 3 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)))
32 resttopon 23077 . . . 4 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝑈𝑌) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈))
3319, 22, 32syl2anc 584 . . 3 (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈))
34 qtopss 23631 . . 3 (((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn ((𝐽 qTop 𝐹) ↾t 𝑈)) ∧ ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) ∧ ran (𝐹𝐴) = 𝑈) → ((𝐽 qTop 𝐹) ↾t 𝑈) ⊆ ((𝐽t 𝐴) qTop (𝐹𝐴)))
3531, 33, 26, 34syl3anc 1373 . 2 (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) ⊆ ((𝐽t 𝐴) qTop (𝐹𝐴)))
36 resttopon 23077 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
371, 11, 36syl2anc 584 . . . . 5 (𝜑 → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
38 fnfun 6586 . . . . . . . 8 (𝐹 Fn 𝑋 → Fun 𝐹)
394, 38syl 17 . . . . . . 7 (𝜑 → Fun 𝐹)
4011, 9sseqtrrd 3968 . . . . . . 7 (𝜑𝐴 ⊆ dom 𝐹)
41 fores 6750 . . . . . . 7 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
4239, 40, 41syl2anc 584 . . . . . 6 (𝜑 → (𝐹𝐴):𝐴onto→(𝐹𝐴))
43 foeq3 6738 . . . . . . 7 ((𝐹𝐴) = 𝑈 → ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto𝑈))
4425, 43syl 17 . . . . . 6 (𝜑 → ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto𝑈))
4542, 44mpbid 232 . . . . 5 (𝜑 → (𝐹𝐴):𝐴onto𝑈)
46 elqtop3 23619 . . . . 5 (((𝐽t 𝐴) ∈ (TopOn‘𝐴) ∧ (𝐹𝐴):𝐴onto𝑈) → (𝑥 ∈ ((𝐽t 𝐴) qTop (𝐹𝐴)) ↔ (𝑥𝑈 ∧ ((𝐹𝐴) “ 𝑥) ∈ (𝐽t 𝐴))))
4737, 45, 46syl2anc 584 . . . 4 (𝜑 → (𝑥 ∈ ((𝐽t 𝐴) qTop (𝐹𝐴)) ↔ (𝑥𝑈 ∧ ((𝐹𝐴) “ 𝑥) ∈ (𝐽t 𝐴))))
48 cnvresima 6182 . . . . . . . 8 ((𝐹𝐴) “ 𝑥) = ((𝐹𝑥) ∩ 𝐴)
49 imass2 6055 . . . . . . . . . . 11 (𝑥𝑈 → (𝐹𝑥) ⊆ (𝐹𝑈))
5049adantl 481 . . . . . . . . . 10 ((𝜑𝑥𝑈) → (𝐹𝑥) ⊆ (𝐹𝑈))
517adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑈) → 𝐴 = (𝐹𝑈))
5250, 51sseqtrrd 3968 . . . . . . . . 9 ((𝜑𝑥𝑈) → (𝐹𝑥) ⊆ 𝐴)
53 dfss2 3916 . . . . . . . . 9 ((𝐹𝑥) ⊆ 𝐴 ↔ ((𝐹𝑥) ∩ 𝐴) = (𝐹𝑥))
5452, 53sylib 218 . . . . . . . 8 ((𝜑𝑥𝑈) → ((𝐹𝑥) ∩ 𝐴) = (𝐹𝑥))
5548, 54eqtrid 2780 . . . . . . 7 ((𝜑𝑥𝑈) → ((𝐹𝐴) “ 𝑥) = (𝐹𝑥))
5655eleq1d 2818 . . . . . 6 ((𝜑𝑥𝑈) → (((𝐹𝐴) “ 𝑥) ∈ (𝐽t 𝐴) ↔ (𝐹𝑥) ∈ (𝐽t 𝐴)))
57 simplrl 776 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑥𝑈)
58 dfss2 3916 . . . . . . . . . 10 (𝑥𝑈 ↔ (𝑥𝑈) = 𝑥)
5957, 58sylib 218 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → (𝑥𝑈) = 𝑥)
60 topontop 22829 . . . . . . . . . . . 12 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → (𝐽 qTop 𝐹) ∈ Top)
6119, 60syl 17 . . . . . . . . . . 11 (𝜑 → (𝐽 qTop 𝐹) ∈ Top)
6261ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → (𝐽 qTop 𝐹) ∈ Top)
63 toponmax 22842 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
641, 63syl 17 . . . . . . . . . . . . 13 (𝜑𝑋𝐽)
65 focdmex 7894 . . . . . . . . . . . . 13 (𝑋𝐽 → (𝐹:𝑋onto𝑌𝑌 ∈ V))
6664, 2, 65sylc 65 . . . . . . . . . . . 12 (𝜑𝑌 ∈ V)
6766, 22ssexd 5264 . . . . . . . . . . 11 (𝜑𝑈 ∈ V)
6867ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑈 ∈ V)
6922ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑈𝑌)
7057, 69sstrd 3941 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑥𝑌)
71 topontop 22829 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
721, 71syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐽 ∈ Top)
73 restopn2 23093 . . . . . . . . . . . . . . 15 ((𝐽 ∈ Top ∧ 𝐴𝐽) → ((𝐹𝑥) ∈ (𝐽t 𝐴) ↔ ((𝐹𝑥) ∈ 𝐽 ∧ (𝐹𝑥) ⊆ 𝐴)))
7472, 73sylan 580 . . . . . . . . . . . . . 14 ((𝜑𝐴𝐽) → ((𝐹𝑥) ∈ (𝐽t 𝐴) ↔ ((𝐹𝑥) ∈ 𝐽 ∧ (𝐹𝑥) ⊆ 𝐴)))
7574simprbda 498 . . . . . . . . . . . . 13 (((𝜑𝐴𝐽) ∧ (𝐹𝑥) ∈ (𝐽t 𝐴)) → (𝐹𝑥) ∈ 𝐽)
7675adantrl 716 . . . . . . . . . . . 12 (((𝜑𝐴𝐽) ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) → (𝐹𝑥) ∈ 𝐽)
7776an32s 652 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → (𝐹𝑥) ∈ 𝐽)
78 elqtop3 23619 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
791, 2, 78syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
8079ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥𝑌 ∧ (𝐹𝑥) ∈ 𝐽)))
8170, 77, 80mpbir2and 713 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑥 ∈ (𝐽 qTop 𝐹))
82 elrestr 17334 . . . . . . . . . 10 (((𝐽 qTop 𝐹) ∈ Top ∧ 𝑈 ∈ V ∧ 𝑥 ∈ (𝐽 qTop 𝐹)) → (𝑥𝑈) ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))
8362, 68, 81, 82syl3anc 1373 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → (𝑥𝑈) ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))
8459, 83eqeltrrd 2834 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴𝐽) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))
8533ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈))
86 toponuni 22830 . . . . . . . . . . . 12 (((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) → 𝑈 = ((𝐽 qTop 𝐹) ↾t 𝑈))
8785, 86syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 = ((𝐽 qTop 𝐹) ↾t 𝑈))
8887difeq1d 4074 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈𝑥) = ( ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥))
8922ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈𝑌)
9019ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
91 toponuni 22830 . . . . . . . . . . . . 13 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → 𝑌 = (𝐽 qTop 𝐹))
9290, 91syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑌 = (𝐽 qTop 𝐹))
9389, 92sseqtrd 3967 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑈 (𝐽 qTop 𝐹))
9489ssdifssd 4096 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈𝑥) ⊆ 𝑌)
9539ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → Fun 𝐹)
96 funcnvcnv 6553 . . . . . . . . . . . . . . 15 (Fun 𝐹 → Fun 𝐹)
97 imadif 6570 . . . . . . . . . . . . . . 15 (Fun 𝐹 → (𝐹 “ (𝑈𝑥)) = ((𝐹𝑈) ∖ (𝐹𝑥)))
9895, 96, 973syl 18 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝑈𝑥)) = ((𝐹𝑈) ∖ (𝐹𝑥)))
997ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 = (𝐹𝑈))
10099difeq1d 4074 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (𝐹𝑥)) = ((𝐹𝑈) ∖ (𝐹𝑥)))
10198, 100eqtr4d 2771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝑈𝑥)) = (𝐴 ∖ (𝐹𝑥)))
102 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 ∈ (Clsd‘𝐽))
10337ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ (TopOn‘𝐴))
104 toponuni 22830 . . . . . . . . . . . . . . . . 17 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → 𝐴 = (𝐽t 𝐴))
105103, 104syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝐴 = (𝐽t 𝐴))
106105difeq1d 4074 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (𝐹𝑥)) = ( (𝐽t 𝐴) ∖ (𝐹𝑥)))
107 topontop 22829 . . . . . . . . . . . . . . . . 17 ((𝐽t 𝐴) ∈ (TopOn‘𝐴) → (𝐽t 𝐴) ∈ Top)
108103, 107syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐽t 𝐴) ∈ Top)
109 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (𝐽t 𝐴))
110 eqid 2733 . . . . . . . . . . . . . . . . 17 (𝐽t 𝐴) = (𝐽t 𝐴)
111110opncld 22949 . . . . . . . . . . . . . . . 16 (((𝐽t 𝐴) ∈ Top ∧ (𝐹𝑥) ∈ (𝐽t 𝐴)) → ( (𝐽t 𝐴) ∖ (𝐹𝑥)) ∈ (Clsd‘(𝐽t 𝐴)))
112108, 109, 111syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ( (𝐽t 𝐴) ∖ (𝐹𝑥)) ∈ (Clsd‘(𝐽t 𝐴)))
113106, 112eqeltrd 2833 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (𝐹𝑥)) ∈ (Clsd‘(𝐽t 𝐴)))
114 restcldr 23090 . . . . . . . . . . . . . 14 ((𝐴 ∈ (Clsd‘𝐽) ∧ (𝐴 ∖ (𝐹𝑥)) ∈ (Clsd‘(𝐽t 𝐴))) → (𝐴 ∖ (𝐹𝑥)) ∈ (Clsd‘𝐽))
115102, 113, 114syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐴 ∖ (𝐹𝑥)) ∈ (Clsd‘𝐽))
116101, 115eqeltrd 2833 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝑈𝑥)) ∈ (Clsd‘𝐽))
117 qtopcld 23629 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝑈𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝑈𝑥)) ∈ (Clsd‘𝐽))))
1181, 2, 117syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((𝑈𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝑈𝑥)) ∈ (Clsd‘𝐽))))
119118ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝑈𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ ((𝑈𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝑈𝑥)) ∈ (Clsd‘𝐽))))
12094, 116, 119mpbir2and 713 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)))
121 difssd 4086 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈𝑥) ⊆ 𝑈)
122 eqid 2733 . . . . . . . . . . . 12 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
123122restcldi 23089 . . . . . . . . . . 11 ((𝑈 (𝐽 qTop 𝐹) ∧ (𝑈𝑥) ∈ (Clsd‘(𝐽 qTop 𝐹)) ∧ (𝑈𝑥) ⊆ 𝑈) → (𝑈𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))
12493, 120, 121, 123syl3anc 1373 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑈𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))
12588, 124eqeltrrd 2834 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ( ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈)))
126 topontop 22829 . . . . . . . . . . 11 (((𝐽 qTop 𝐹) ↾t 𝑈) ∈ (TopOn‘𝑈) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top)
12785, 126syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → ((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top)
128 simplrl 776 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥𝑈)
129128, 87sseqtrd 3967 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ((𝐽 qTop 𝐹) ↾t 𝑈))
130 eqid 2733 . . . . . . . . . . 11 ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽 qTop 𝐹) ↾t 𝑈)
131130isopn2 22948 . . . . . . . . . 10 ((((𝐽 qTop 𝐹) ↾t 𝑈) ∈ Top ∧ 𝑥 ((𝐽 qTop 𝐹) ↾t 𝑈)) → (𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈) ↔ ( ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))))
132127, 129, 131syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → (𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈) ↔ ( ((𝐽 qTop 𝐹) ↾t 𝑈) ∖ 𝑥) ∈ (Clsd‘((𝐽 qTop 𝐹) ↾t 𝑈))))
133125, 132mpbird 257 . . . . . . . 8 (((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) ∧ 𝐴 ∈ (Clsd‘𝐽)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))
134 qtoprest.6 . . . . . . . . 9 (𝜑 → (𝐴𝐽𝐴 ∈ (Clsd‘𝐽)))
135134adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) → (𝐴𝐽𝐴 ∈ (Clsd‘𝐽)))
13684, 133, 135mpjaodan 960 . . . . . . 7 ((𝜑 ∧ (𝑥𝑈 ∧ (𝐹𝑥) ∈ (𝐽t 𝐴))) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈))
137136expr 456 . . . . . 6 ((𝜑𝑥𝑈) → ((𝐹𝑥) ∈ (𝐽t 𝐴) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)))
13856, 137sylbid 240 . . . . 5 ((𝜑𝑥𝑈) → (((𝐹𝐴) “ 𝑥) ∈ (𝐽t 𝐴) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)))
139138expimpd 453 . . . 4 (𝜑 → ((𝑥𝑈 ∧ ((𝐹𝐴) “ 𝑥) ∈ (𝐽t 𝐴)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)))
14047, 139sylbid 240 . . 3 (𝜑 → (𝑥 ∈ ((𝐽t 𝐴) qTop (𝐹𝐴)) → 𝑥 ∈ ((𝐽 qTop 𝐹) ↾t 𝑈)))
141140ssrdv 3936 . 2 (𝜑 → ((𝐽t 𝐴) qTop (𝐹𝐴)) ⊆ ((𝐽 qTop 𝐹) ↾t 𝑈))
14235, 141eqssd 3948 1 (𝜑 → ((𝐽 qTop 𝐹) ↾t 𝑈) = ((𝐽t 𝐴) qTop (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  cin 3897  wss 3898   cuni 4858  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6480   Fn wfn 6481  ontowfo 6484  cfv 6486  (class class class)co 7352  t crest 17326   qTop cqtop 17409  Topctop 22809  TopOnctopon 22826  Clsdccld 22932   Cn ccn 23140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-map 8758  df-en 8876  df-fin 8879  df-fi 9302  df-rest 17328  df-topgen 17349  df-qtop 17413  df-top 22810  df-topon 22827  df-bases 22862  df-cld 22935  df-cn 23143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator