MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcld Structured version   Visualization version   GIF version

Theorem qtopcld 23628
Description: The property of being a closed set in the quotient topology. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
qtopcld ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ (Clsd‘𝐽))))

Proof of Theorem qtopcld
StepHypRef Expression
1 qtoptopon 23619 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
2 topontop 22828 . . 3 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → (𝐽 qTop 𝐹) ∈ Top)
3 eqid 2731 . . . 4 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
43iscld 22942 . . 3 ((𝐽 qTop 𝐹) ∈ Top → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 (𝐽 qTop 𝐹) ∧ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹))))
51, 2, 43syl 18 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 (𝐽 qTop 𝐹) ∧ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹))))
6 toponuni 22829 . . . . 5 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → 𝑌 = (𝐽 qTop 𝐹))
71, 6syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
87sseq2d 3962 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴𝑌𝐴 (𝐽 qTop 𝐹)))
97difeq1d 4072 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝑌𝐴) = ( (𝐽 qTop 𝐹) ∖ 𝐴))
109eleq1d 2816 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹)))
118, 10anbi12d 632 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝐴𝑌 ∧ (𝑌𝐴) ∈ (𝐽 qTop 𝐹)) ↔ (𝐴 (𝐽 qTop 𝐹) ∧ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹))))
12 elqtop3 23618 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ ((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽)))
1312adantr 480 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ ((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽)))
14 difss 4083 . . . . . 6 (𝑌𝐴) ⊆ 𝑌
1514biantrur 530 . . . . 5 ((𝐹 “ (𝑌𝐴)) ∈ 𝐽 ↔ ((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽))
16 fofun 6736 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → Fun 𝐹)
1716ad2antlr 727 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
18 funcnvcnv 6548 . . . . . . . . 9 (Fun 𝐹 → Fun 𝐹)
19 imadif 6565 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (𝑌𝐴)) = ((𝐹𝑌) ∖ (𝐹𝐴)))
2017, 18, 193syl 18 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹 “ (𝑌𝐴)) = ((𝐹𝑌) ∖ (𝐹𝐴)))
21 fof 6735 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
22 fimacnv 6673 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → (𝐹𝑌) = 𝑋)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹:𝑋onto𝑌 → (𝐹𝑌) = 𝑋)
2423ad2antlr 727 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝑌) = 𝑋)
25 toponuni 22829 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2625ad2antrr 726 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → 𝑋 = 𝐽)
2724, 26eqtrd 2766 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝑌) = 𝐽)
2827difeq1d 4072 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹𝑌) ∖ (𝐹𝐴)) = ( 𝐽 ∖ (𝐹𝐴)))
2920, 28eqtrd 2766 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹 “ (𝑌𝐴)) = ( 𝐽 ∖ (𝐹𝐴)))
3029eleq1d 2816 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹 “ (𝑌𝐴)) ∈ 𝐽 ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
31 topontop 22828 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3231ad2antrr 726 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → 𝐽 ∈ Top)
33 cnvimass 6030 . . . . . . . . 9 (𝐹𝐴) ⊆ dom 𝐹
34 fofn 6737 . . . . . . . . . . 11 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
3534fndmd 6586 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → dom 𝐹 = 𝑋)
3635ad2antlr 727 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → dom 𝐹 = 𝑋)
3733, 36sseqtrid 3972 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝐴) ⊆ 𝑋)
3837, 26sseqtrd 3966 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝐴) ⊆ 𝐽)
39 eqid 2731 . . . . . . . 8 𝐽 = 𝐽
4039iscld2 22943 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐽) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
4132, 38, 40syl2anc 584 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
4230, 41bitr4d 282 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹 “ (𝑌𝐴)) ∈ 𝐽 ↔ (𝐹𝐴) ∈ (Clsd‘𝐽)))
4315, 42bitr3id 285 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐽)))
4413, 43bitrd 279 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ (𝐹𝐴) ∈ (Clsd‘𝐽)))
4544pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝐴𝑌 ∧ (𝑌𝐴) ∈ (𝐽 qTop 𝐹)) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ (Clsd‘𝐽))))
465, 11, 453bitr2d 307 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ (Clsd‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cdif 3894  wss 3897   cuni 4856  ccnv 5613  dom cdm 5614  cima 5617  Fun wfun 6475  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346   qTop cqtop 17407  Topctop 22808  TopOnctopon 22825  Clsdccld 22931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-qtop 17411  df-top 22809  df-topon 22826  df-cld 22934
This theorem is referenced by:  qtoprest  23632  kqcld  23650  qustgphaus  24038  qtopt1  33848
  Copyright terms: Public domain W3C validator