Proof of Theorem qtopcld
| Step | Hyp | Ref
| Expression |
| 1 | | qtoptopon 23712 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
| 2 | | topontop 22919 |
. . 3
⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → (𝐽 qTop 𝐹) ∈ Top) |
| 3 | | eqid 2737 |
. . . 4
⊢ ∪ (𝐽
qTop 𝐹) = ∪ (𝐽
qTop 𝐹) |
| 4 | 3 | iscld 23035 |
. . 3
⊢ ((𝐽 qTop 𝐹) ∈ Top → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 ⊆ ∪ (𝐽 qTop 𝐹) ∧ (∪ (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹)))) |
| 5 | 1, 2, 4 | 3syl 18 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 ⊆ ∪ (𝐽 qTop 𝐹) ∧ (∪ (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹)))) |
| 6 | | toponuni 22920 |
. . . . 5
⊢ ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 7 | 1, 6 | syl 17 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → 𝑌 = ∪ (𝐽 qTop 𝐹)) |
| 8 | 7 | sseq2d 4016 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ⊆ 𝑌 ↔ 𝐴 ⊆ ∪ (𝐽 qTop 𝐹))) |
| 9 | 7 | difeq1d 4125 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝑌 ∖ 𝐴) = (∪ (𝐽 qTop 𝐹) ∖ 𝐴)) |
| 10 | 9 | eleq1d 2826 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ((𝑌 ∖ 𝐴) ∈ (𝐽 qTop 𝐹) ↔ (∪
(𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹))) |
| 11 | 8, 10 | anbi12d 632 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ((𝐴 ⊆ 𝑌 ∧ (𝑌 ∖ 𝐴) ∈ (𝐽 qTop 𝐹)) ↔ (𝐴 ⊆ ∪ (𝐽 qTop 𝐹) ∧ (∪ (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹)))) |
| 12 | | elqtop3 23711 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ((𝑌 ∖ 𝐴) ∈ (𝐽 qTop 𝐹) ↔ ((𝑌 ∖ 𝐴) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑌 ∖ 𝐴)) ∈ 𝐽))) |
| 13 | 12 | adantr 480 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝑌 ∖ 𝐴) ∈ (𝐽 qTop 𝐹) ↔ ((𝑌 ∖ 𝐴) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑌 ∖ 𝐴)) ∈ 𝐽))) |
| 14 | | difss 4136 |
. . . . . 6
⊢ (𝑌 ∖ 𝐴) ⊆ 𝑌 |
| 15 | 14 | biantrur 530 |
. . . . 5
⊢ ((◡𝐹 “ (𝑌 ∖ 𝐴)) ∈ 𝐽 ↔ ((𝑌 ∖ 𝐴) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑌 ∖ 𝐴)) ∈ 𝐽)) |
| 16 | | fofun 6821 |
. . . . . . . . . 10
⊢ (𝐹:𝑋–onto→𝑌 → Fun 𝐹) |
| 17 | 16 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → Fun 𝐹) |
| 18 | | funcnvcnv 6633 |
. . . . . . . . 9
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
| 19 | | imadif 6650 |
. . . . . . . . 9
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑌 ∖ 𝐴)) = ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝐴))) |
| 20 | 17, 18, 19 | 3syl 18 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → (◡𝐹 “ (𝑌 ∖ 𝐴)) = ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝐴))) |
| 21 | | fof 6820 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) |
| 22 | | fimacnv 6758 |
. . . . . . . . . . . 12
⊢ (𝐹:𝑋⟶𝑌 → (◡𝐹 “ 𝑌) = 𝑋) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋–onto→𝑌 → (◡𝐹 “ 𝑌) = 𝑋) |
| 24 | 23 | ad2antlr 727 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → (◡𝐹 “ 𝑌) = 𝑋) |
| 25 | | toponuni 22920 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 26 | 25 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝑋 = ∪ 𝐽) |
| 27 | 24, 26 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → (◡𝐹 “ 𝑌) = ∪ 𝐽) |
| 28 | 27 | difeq1d 4125 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝐴)) = (∪ 𝐽 ∖ (◡𝐹 “ 𝐴))) |
| 29 | 20, 28 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → (◡𝐹 “ (𝑌 ∖ 𝐴)) = (∪ 𝐽 ∖ (◡𝐹 “ 𝐴))) |
| 30 | 29 | eleq1d 2826 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → ((◡𝐹 “ (𝑌 ∖ 𝐴)) ∈ 𝐽 ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
| 31 | | topontop 22919 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 32 | 31 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → 𝐽 ∈ Top) |
| 33 | | cnvimass 6100 |
. . . . . . . . 9
⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 |
| 34 | | fofn 6822 |
. . . . . . . . . . 11
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹 Fn 𝑋) |
| 35 | 34 | fndmd 6673 |
. . . . . . . . . 10
⊢ (𝐹:𝑋–onto→𝑌 → dom 𝐹 = 𝑋) |
| 36 | 35 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → dom 𝐹 = 𝑋) |
| 37 | 33, 36 | sseqtrid 4026 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → (◡𝐹 “ 𝐴) ⊆ 𝑋) |
| 38 | 37, 26 | sseqtrd 4020 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → (◡𝐹 “ 𝐴) ⊆ ∪ 𝐽) |
| 39 | | eqid 2737 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 40 | 39 | iscld2 23036 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝐴) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
| 41 | 32, 38, 40 | syl2anc 584 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → ((◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
| 42 | 30, 41 | bitr4d 282 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → ((◡𝐹 “ (𝑌 ∖ 𝐴)) ∈ 𝐽 ↔ (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽))) |
| 43 | 15, 42 | bitr3id 285 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → (((𝑌 ∖ 𝐴) ⊆ 𝑌 ∧ (◡𝐹 “ (𝑌 ∖ 𝐴)) ∈ 𝐽) ↔ (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽))) |
| 44 | 13, 43 | bitrd 279 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) ∧ 𝐴 ⊆ 𝑌) → ((𝑌 ∖ 𝐴) ∈ (𝐽 qTop 𝐹) ↔ (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽))) |
| 45 | 44 | pm5.32da 579 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ((𝐴 ⊆ 𝑌 ∧ (𝑌 ∖ 𝐴) ∈ (𝐽 qTop 𝐹)) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)))) |
| 46 | 5, 11, 45 | 3bitr2d 307 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 ⊆ 𝑌 ∧ (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)))) |