MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcld Structured version   Visualization version   GIF version

Theorem qtopcld 23721
Description: The property of being a closed set in the quotient topology. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
qtopcld ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ (Clsd‘𝐽))))

Proof of Theorem qtopcld
StepHypRef Expression
1 qtoptopon 23712 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
2 topontop 22919 . . 3 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → (𝐽 qTop 𝐹) ∈ Top)
3 eqid 2737 . . . 4 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
43iscld 23035 . . 3 ((𝐽 qTop 𝐹) ∈ Top → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 (𝐽 qTop 𝐹) ∧ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹))))
51, 2, 43syl 18 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴 (𝐽 qTop 𝐹) ∧ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹))))
6 toponuni 22920 . . . . 5 ((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) → 𝑌 = (𝐽 qTop 𝐹))
71, 6syl 17 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → 𝑌 = (𝐽 qTop 𝐹))
87sseq2d 4016 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴𝑌𝐴 (𝐽 qTop 𝐹)))
97difeq1d 4125 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝑌𝐴) = ( (𝐽 qTop 𝐹) ∖ 𝐴))
109eleq1d 2826 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹)))
118, 10anbi12d 632 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝐴𝑌 ∧ (𝑌𝐴) ∈ (𝐽 qTop 𝐹)) ↔ (𝐴 (𝐽 qTop 𝐹) ∧ ( (𝐽 qTop 𝐹) ∖ 𝐴) ∈ (𝐽 qTop 𝐹))))
12 elqtop3 23711 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ ((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽)))
1312adantr 480 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ ((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽)))
14 difss 4136 . . . . . 6 (𝑌𝐴) ⊆ 𝑌
1514biantrur 530 . . . . 5 ((𝐹 “ (𝑌𝐴)) ∈ 𝐽 ↔ ((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽))
16 fofun 6821 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → Fun 𝐹)
1716ad2antlr 727 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → Fun 𝐹)
18 funcnvcnv 6633 . . . . . . . . 9 (Fun 𝐹 → Fun 𝐹)
19 imadif 6650 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (𝑌𝐴)) = ((𝐹𝑌) ∖ (𝐹𝐴)))
2017, 18, 193syl 18 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹 “ (𝑌𝐴)) = ((𝐹𝑌) ∖ (𝐹𝐴)))
21 fof 6820 . . . . . . . . . . . 12 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
22 fimacnv 6758 . . . . . . . . . . . 12 (𝐹:𝑋𝑌 → (𝐹𝑌) = 𝑋)
2321, 22syl 17 . . . . . . . . . . 11 (𝐹:𝑋onto𝑌 → (𝐹𝑌) = 𝑋)
2423ad2antlr 727 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝑌) = 𝑋)
25 toponuni 22920 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
2625ad2antrr 726 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → 𝑋 = 𝐽)
2724, 26eqtrd 2777 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝑌) = 𝐽)
2827difeq1d 4125 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹𝑌) ∖ (𝐹𝐴)) = ( 𝐽 ∖ (𝐹𝐴)))
2920, 28eqtrd 2777 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹 “ (𝑌𝐴)) = ( 𝐽 ∖ (𝐹𝐴)))
3029eleq1d 2826 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹 “ (𝑌𝐴)) ∈ 𝐽 ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
31 topontop 22919 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3231ad2antrr 726 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → 𝐽 ∈ Top)
33 cnvimass 6100 . . . . . . . . 9 (𝐹𝐴) ⊆ dom 𝐹
34 fofn 6822 . . . . . . . . . . 11 (𝐹:𝑋onto𝑌𝐹 Fn 𝑋)
3534fndmd 6673 . . . . . . . . . 10 (𝐹:𝑋onto𝑌 → dom 𝐹 = 𝑋)
3635ad2antlr 727 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → dom 𝐹 = 𝑋)
3733, 36sseqtrid 4026 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝐴) ⊆ 𝑋)
3837, 26sseqtrd 4020 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (𝐹𝐴) ⊆ 𝐽)
39 eqid 2737 . . . . . . . 8 𝐽 = 𝐽
4039iscld2 23036 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐽) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
4132, 38, 40syl2anc 584 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹𝐴) ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ (𝐹𝐴)) ∈ 𝐽))
4230, 41bitr4d 282 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝐹 “ (𝑌𝐴)) ∈ 𝐽 ↔ (𝐹𝐴) ∈ (Clsd‘𝐽)))
4315, 42bitr3id 285 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → (((𝑌𝐴) ⊆ 𝑌 ∧ (𝐹 “ (𝑌𝐴)) ∈ 𝐽) ↔ (𝐹𝐴) ∈ (Clsd‘𝐽)))
4413, 43bitrd 279 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) ∧ 𝐴𝑌) → ((𝑌𝐴) ∈ (𝐽 qTop 𝐹) ↔ (𝐹𝐴) ∈ (Clsd‘𝐽)))
4544pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝐴𝑌 ∧ (𝑌𝐴) ∈ (𝐽 qTop 𝐹)) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ (Clsd‘𝐽))))
465, 11, 453bitr2d 307 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐴 ∈ (Clsd‘(𝐽 qTop 𝐹)) ↔ (𝐴𝑌 ∧ (𝐹𝐴) ∈ (Clsd‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cdif 3948  wss 3951   cuni 4907  ccnv 5684  dom cdm 5685  cima 5688  Fun wfun 6555  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431   qTop cqtop 17548  Topctop 22899  TopOnctopon 22916  Clsdccld 23024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-qtop 17552  df-top 22900  df-topon 22917  df-cld 23027
This theorem is referenced by:  qtoprest  23725  kqcld  23743  qustgphaus  24131  qtopt1  33834
  Copyright terms: Public domain W3C validator