| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnclima | Structured version Visualization version GIF version | ||
| Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnclima | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2729 | . . . . . 6 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 1, 2 | cnf 23166 | . . . . 5 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
| 5 | ffun 6673 | . . . . . 6 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → Fun 𝐹) | |
| 6 | funcnvcnv 6567 | . . . . . 6 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
| 7 | imadif 6584 | . . . . . 6 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) = ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴))) | |
| 8 | 5, 6, 7 | 3syl 18 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) = ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴))) |
| 9 | fimacnv 6692 | . . . . . 6 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (◡𝐹 “ ∪ 𝐾) = ∪ 𝐽) | |
| 10 | 9 | difeq1d 4084 | . . . . 5 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → ((◡𝐹 “ ∪ 𝐾) ∖ (◡𝐹 “ 𝐴)) = (∪ 𝐽 ∖ (◡𝐹 “ 𝐴))) |
| 11 | 8, 10 | eqtr2d 2765 | . . . 4 ⊢ (𝐹:∪ 𝐽⟶∪ 𝐾 → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) = (◡𝐹 “ (∪ 𝐾 ∖ 𝐴))) |
| 12 | 4, 11 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) = (◡𝐹 “ (∪ 𝐾 ∖ 𝐴))) |
| 13 | 2 | cldopn 22951 | . . . 4 ⊢ (𝐴 ∈ (Clsd‘𝐾) → (∪ 𝐾 ∖ 𝐴) ∈ 𝐾) |
| 14 | cnima 23185 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (∪ 𝐾 ∖ 𝐴) ∈ 𝐾) → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) ∈ 𝐽) | |
| 15 | 13, 14 | sylan2 593 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ (∪ 𝐾 ∖ 𝐴)) ∈ 𝐽) |
| 16 | 12, 15 | eqeltrd 2828 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽) |
| 17 | cntop1 23160 | . . 3 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 18 | cnvimass 6042 | . . . 4 ⊢ (◡𝐹 “ 𝐴) ⊆ dom 𝐹 | |
| 19 | 18, 4 | fssdm 6689 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ⊆ ∪ 𝐽) |
| 20 | 1 | iscld2 22948 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝐴) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
| 21 | 17, 19, 20 | syl2an2r 685 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → ((◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ (◡𝐹 “ 𝐴)) ∈ 𝐽)) |
| 22 | 16, 21 | mpbird 257 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 ⊆ wss 3911 ∪ cuni 4867 ◡ccnv 5630 “ cima 5634 Fun wfun 6493 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Topctop 22813 Clsdccld 22936 Cn ccn 23144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22814 df-topon 22831 df-cld 22939 df-cn 23147 |
| This theorem is referenced by: iscncl 23189 cncls2i 23190 paste 23214 cnt1 23270 dnsconst 23298 cnconn 23342 hauseqlcld 23566 txconn 23609 imasncld 23611 r0cld 23658 kqreglem2 23662 kqnrmlem1 23663 kqnrmlem2 23664 hmeocld 23687 nrmhmph 23714 tgphaus 24037 csscld 25182 clsocv 25183 hmeoclda 36314 hmeocldb 36315 rfcnpre3 45020 rfcnpre4 45021 sepfsepc 48909 seppcld 48911 |
| Copyright terms: Public domain | W3C validator |