| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difpreima | Structured version Visualization version GIF version | ||
| Description: Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.) |
| Ref | Expression |
|---|---|
| difpreima | ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∖ 𝐵)) = ((◡𝐹 “ 𝐴) ∖ (◡𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvcnv 6603 | . 2 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
| 2 | imadif 6620 | . 2 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (𝐴 ∖ 𝐵)) = ((◡𝐹 “ 𝐴) ∖ (◡𝐹 “ 𝐵))) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∖ 𝐵)) = ((◡𝐹 “ 𝐴) ∖ (◡𝐹 “ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3923 ◡ccnv 5653 “ cima 5657 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 |
| This theorem is referenced by: gsumpropd2lem 18657 supppreima 32668 elrgspnsubrunlem2 33243 elrspunidl 33443 fsumcvg4 33981 zrhunitpreima 34007 imambfm 34294 carsggect 34350 sibfof 34372 eulerpartlemmf 34407 itg2addnclem 37695 itg2addnclem2 37696 smfresal 46817 |
| Copyright terms: Public domain | W3C validator |