MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difpreima Structured version   Visualization version   GIF version

Theorem difpreima 6942
Description: Preimage of a difference. (Contributed by Mario Carneiro, 14-Jun-2016.)
Assertion
Ref Expression
difpreima (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))

Proof of Theorem difpreima
StepHypRef Expression
1 funcnvcnv 6501 . 2 (Fun 𝐹 → Fun 𝐹)
2 imadif 6518 . 2 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
31, 2syl 17 1 (Fun 𝐹 → (𝐹 “ (𝐴𝐵)) = ((𝐹𝐴) ∖ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cdif 3884  ccnv 5588  cima 5592  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fun 6435
This theorem is referenced by:  gsumpropd2lem  18363  supppreima  31025  elrspunidl  31606  fsumcvg4  31900  zrhunitpreima  31928  imambfm  32229  carsggect  32285  sibfof  32307  eulerpartlemmf  32342  itg2addnclem  35828  itg2addnclem2  35829  smfresal  44322
  Copyright terms: Public domain W3C validator