Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfimaicc | Structured version Visualization version GIF version |
Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
mbfimaicc | ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssre 13161 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ) | |
2 | 1 | adantl 482 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) ⊆ ℝ) |
3 | dfss4 4192 | . . . . . 6 ⊢ ((𝐵[,]𝐶) ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶)) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶)) |
5 | difreicc 13216 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) | |
6 | 5 | adantl 482 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) |
7 | 6 | difeq2d 4057 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) |
8 | 4, 7 | eqtr3d 2780 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) |
9 | 8 | imaeq2d 5969 | . . 3 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) = (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
10 | ffun 6603 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → Fun 𝐹) | |
11 | funcnvcnv 6501 | . . . . . 6 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐹:𝐴⟶ℝ → Fun ◡◡𝐹) |
13 | 12 | ad2antlr 724 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → Fun ◡◡𝐹) |
14 | imadif 6518 | . . . 4 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
16 | 9, 15 | eqtrd 2778 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
17 | fimacnv 6622 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → (◡𝐹 “ ℝ) = 𝐴) | |
18 | 17 | adantl 482 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ℝ) = 𝐴) |
19 | mbfdm 24790 | . . . . . 6 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
20 | fdm 6609 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴) | |
21 | 20 | eleq1d 2823 | . . . . . . 7 ⊢ (𝐹:𝐴⟶ℝ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
22 | 21 | biimpac 479 | . . . . . 6 ⊢ ((dom 𝐹 ∈ dom vol ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol) |
23 | 19, 22 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol) |
24 | 18, 23 | eqeltrd 2839 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ℝ) ∈ dom vol) |
25 | imaundi 6053 | . . . . 5 ⊢ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) = ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) | |
26 | mbfima 24794 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (-∞(,)𝐵)) ∈ dom vol) | |
27 | mbfima 24794 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐶(,)+∞)) ∈ dom vol) | |
28 | unmbl 24701 | . . . . . 6 ⊢ (((◡𝐹 “ (-∞(,)𝐵)) ∈ dom vol ∧ (◡𝐹 “ (𝐶(,)+∞)) ∈ dom vol) → ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) ∈ dom vol) | |
29 | 26, 27, 28 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) ∈ dom vol) |
30 | 25, 29 | eqeltrid 2843 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol) |
31 | difmbl 24707 | . . . 4 ⊢ (((◡𝐹 “ ℝ) ∈ dom vol ∧ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) | |
32 | 24, 30, 31 | syl2anc 584 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) |
33 | 32 | adantr 481 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) |
34 | 16, 33 | eqeltrd 2839 | 1 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 ⊆ wss 3887 ◡ccnv 5588 dom cdm 5589 “ cima 5592 Fun wfun 6427 ⟶wf 6429 (class class class)co 7275 ℝcr 10870 +∞cpnf 11006 -∞cmnf 11007 (,)cioo 13079 [,]cicc 13082 volcvol 24627 MblFncmbf 24778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xadd 12849 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-xmet 20590 df-met 20591 df-ovol 24628 df-vol 24629 df-mbf 24783 |
This theorem is referenced by: mbfimasn 24796 |
Copyright terms: Public domain | W3C validator |