Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mbfimaicc | Structured version Visualization version GIF version |
Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
mbfimaicc | ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssre 13254 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ) | |
2 | 1 | adantl 482 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) ⊆ ℝ) |
3 | dfss4 4204 | . . . . . 6 ⊢ ((𝐵[,]𝐶) ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶)) | |
4 | 2, 3 | sylib 217 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶)) |
5 | difreicc 13309 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) | |
6 | 5 | adantl 482 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) |
7 | 6 | difeq2d 4068 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) |
8 | 4, 7 | eqtr3d 2778 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) |
9 | 8 | imaeq2d 5993 | . . 3 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) = (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
10 | ffun 6648 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → Fun 𝐹) | |
11 | funcnvcnv 6545 | . . . . . 6 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐹:𝐴⟶ℝ → Fun ◡◡𝐹) |
13 | 12 | ad2antlr 724 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → Fun ◡◡𝐹) |
14 | imadif 6562 | . . . 4 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
16 | 9, 15 | eqtrd 2776 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
17 | fimacnv 6667 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → (◡𝐹 “ ℝ) = 𝐴) | |
18 | 17 | adantl 482 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ℝ) = 𝐴) |
19 | mbfdm 24888 | . . . . . 6 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
20 | fdm 6654 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴) | |
21 | 20 | eleq1d 2821 | . . . . . . 7 ⊢ (𝐹:𝐴⟶ℝ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
22 | 21 | biimpac 479 | . . . . . 6 ⊢ ((dom 𝐹 ∈ dom vol ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol) |
23 | 19, 22 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol) |
24 | 18, 23 | eqeltrd 2837 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ℝ) ∈ dom vol) |
25 | imaundi 6082 | . . . . 5 ⊢ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) = ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) | |
26 | mbfima 24892 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (-∞(,)𝐵)) ∈ dom vol) | |
27 | mbfima 24892 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐶(,)+∞)) ∈ dom vol) | |
28 | unmbl 24799 | . . . . . 6 ⊢ (((◡𝐹 “ (-∞(,)𝐵)) ∈ dom vol ∧ (◡𝐹 “ (𝐶(,)+∞)) ∈ dom vol) → ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) ∈ dom vol) | |
29 | 26, 27, 28 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) ∈ dom vol) |
30 | 25, 29 | eqeltrid 2841 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol) |
31 | difmbl 24805 | . . . 4 ⊢ (((◡𝐹 “ ℝ) ∈ dom vol ∧ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) | |
32 | 24, 30, 31 | syl2anc 584 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) |
33 | 32 | adantr 481 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) |
34 | 16, 33 | eqeltrd 2837 | 1 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∖ cdif 3894 ∪ cun 3895 ⊆ wss 3897 ◡ccnv 5613 dom cdm 5614 “ cima 5617 Fun wfun 6467 ⟶wf 6469 (class class class)co 7329 ℝcr 10963 +∞cpnf 11099 -∞cmnf 11100 (,)cioo 13172 [,]cicc 13175 volcvol 24725 MblFncmbf 24876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-er 8561 df-map 8680 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-inf 9292 df-oi 9359 df-dju 9750 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-z 12413 df-uz 12676 df-q 12782 df-rp 12824 df-xadd 12942 df-ioo 13176 df-ico 13178 df-icc 13179 df-fz 13333 df-fzo 13476 df-fl 13605 df-seq 13815 df-exp 13876 df-hash 14138 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 df-sum 15489 df-xmet 20688 df-met 20689 df-ovol 24726 df-vol 24727 df-mbf 24881 |
This theorem is referenced by: mbfimasn 24894 |
Copyright terms: Public domain | W3C validator |