| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfimaicc | Structured version Visualization version GIF version | ||
| Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfimaicc | ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre 13350 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) ⊆ ℝ) |
| 3 | dfss4 4222 | . . . . . 6 ⊢ ((𝐵[,]𝐶) ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶)) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶)) |
| 5 | difreicc 13405 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) | |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) |
| 7 | 6 | difeq2d 4079 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) |
| 8 | 4, 7 | eqtr3d 2766 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) |
| 9 | 8 | imaeq2d 6015 | . . 3 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) = (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
| 10 | ffun 6659 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → Fun 𝐹) | |
| 11 | funcnvcnv 6553 | . . . . . 6 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐹:𝐴⟶ℝ → Fun ◡◡𝐹) |
| 13 | 12 | ad2antlr 727 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → Fun ◡◡𝐹) |
| 14 | imadif 6570 | . . . 4 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
| 16 | 9, 15 | eqtrd 2764 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
| 17 | fimacnv 6678 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → (◡𝐹 “ ℝ) = 𝐴) | |
| 18 | 17 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ℝ) = 𝐴) |
| 19 | mbfdm 25543 | . . . . . 6 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
| 20 | fdm 6665 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴) | |
| 21 | 20 | eleq1d 2813 | . . . . . . 7 ⊢ (𝐹:𝐴⟶ℝ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
| 22 | 21 | biimpac 478 | . . . . . 6 ⊢ ((dom 𝐹 ∈ dom vol ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol) |
| 23 | 19, 22 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol) |
| 24 | 18, 23 | eqeltrd 2828 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ℝ) ∈ dom vol) |
| 25 | imaundi 6102 | . . . . 5 ⊢ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) = ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) | |
| 26 | mbfima 25547 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (-∞(,)𝐵)) ∈ dom vol) | |
| 27 | mbfima 25547 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐶(,)+∞)) ∈ dom vol) | |
| 28 | unmbl 25454 | . . . . . 6 ⊢ (((◡𝐹 “ (-∞(,)𝐵)) ∈ dom vol ∧ (◡𝐹 “ (𝐶(,)+∞)) ∈ dom vol) → ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) ∈ dom vol) | |
| 29 | 26, 27, 28 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) ∈ dom vol) |
| 30 | 25, 29 | eqeltrid 2832 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol) |
| 31 | difmbl 25460 | . . . 4 ⊢ (((◡𝐹 “ ℝ) ∈ dom vol ∧ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) | |
| 32 | 24, 30, 31 | syl2anc 584 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) |
| 33 | 32 | adantr 480 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) |
| 34 | 16, 33 | eqeltrd 2828 | 1 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3902 ∪ cun 3903 ⊆ wss 3905 ◡ccnv 5622 dom cdm 5623 “ cima 5626 Fun wfun 6480 ⟶wf 6482 (class class class)co 7353 ℝcr 11027 +∞cpnf 11165 -∞cmnf 11166 (,)cioo 13266 [,]cicc 13269 volcvol 25380 MblFncmbf 25531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-oi 9421 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-rp 12912 df-xadd 13033 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-xmet 21272 df-met 21273 df-ovol 25381 df-vol 25382 df-mbf 25536 |
| This theorem is referenced by: mbfimasn 25549 |
| Copyright terms: Public domain | W3C validator |