| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mbfimaicc | Structured version Visualization version GIF version | ||
| Description: The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| mbfimaicc | ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre 13397 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) ⊆ ℝ) |
| 3 | dfss4 4235 | . . . . . 6 ⊢ ((𝐵[,]𝐶) ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶)) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (𝐵[,]𝐶)) |
| 5 | difreicc 13452 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) | |
| 6 | 5 | adantl 481 | . . . . . 6 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (𝐵[,]𝐶)) = ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) |
| 7 | 6 | difeq2d 4092 | . . . . 5 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (ℝ ∖ (ℝ ∖ (𝐵[,]𝐶))) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) |
| 8 | 4, 7 | eqtr3d 2767 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (𝐵[,]𝐶) = (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) |
| 9 | 8 | imaeq2d 6034 | . . 3 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) = (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
| 10 | ffun 6694 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → Fun 𝐹) | |
| 11 | funcnvcnv 6586 | . . . . . 6 ⊢ (Fun 𝐹 → Fun ◡◡𝐹) | |
| 12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐹:𝐴⟶ℝ → Fun ◡◡𝐹) |
| 13 | 12 | ad2antlr 727 | . . . 4 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → Fun ◡◡𝐹) |
| 14 | imadif 6603 | . . . 4 ⊢ (Fun ◡◡𝐹 → (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (ℝ ∖ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
| 16 | 9, 15 | eqtrd 2765 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) = ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))))) |
| 17 | fimacnv 6713 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → (◡𝐹 “ ℝ) = 𝐴) | |
| 18 | 17 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ℝ) = 𝐴) |
| 19 | mbfdm 25534 | . . . . . 6 ⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | |
| 20 | fdm 6700 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴) | |
| 21 | 20 | eleq1d 2814 | . . . . . . 7 ⊢ (𝐹:𝐴⟶ℝ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol)) |
| 22 | 21 | biimpac 478 | . . . . . 6 ⊢ ((dom 𝐹 ∈ dom vol ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol) |
| 23 | 19, 22 | sylan 580 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → 𝐴 ∈ dom vol) |
| 24 | 18, 23 | eqeltrd 2829 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ℝ) ∈ dom vol) |
| 25 | imaundi 6125 | . . . . 5 ⊢ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) = ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) | |
| 26 | mbfima 25538 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (-∞(,)𝐵)) ∈ dom vol) | |
| 27 | mbfima 25538 | . . . . . 6 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐶(,)+∞)) ∈ dom vol) | |
| 28 | unmbl 25445 | . . . . . 6 ⊢ (((◡𝐹 “ (-∞(,)𝐵)) ∈ dom vol ∧ (◡𝐹 “ (𝐶(,)+∞)) ∈ dom vol) → ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) ∈ dom vol) | |
| 29 | 26, 27, 28 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((◡𝐹 “ (-∞(,)𝐵)) ∪ (◡𝐹 “ (𝐶(,)+∞))) ∈ dom vol) |
| 30 | 25, 29 | eqeltrid 2833 | . . . 4 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol) |
| 31 | difmbl 25451 | . . . 4 ⊢ (((◡𝐹 “ ℝ) ∈ dom vol ∧ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞))) ∈ dom vol) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) | |
| 32 | 24, 30, 31 | syl2anc 584 | . . 3 ⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) |
| 33 | 32 | adantr 480 | . 2 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → ((◡𝐹 “ ℝ) ∖ (◡𝐹 “ ((-∞(,)𝐵) ∪ (𝐶(,)+∞)))) ∈ dom vol) |
| 34 | 16, 33 | eqeltrd 2829 | 1 ⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∪ cun 3915 ⊆ wss 3917 ◡ccnv 5640 dom cdm 5641 “ cima 5644 Fun wfun 6508 ⟶wf 6510 (class class class)co 7390 ℝcr 11074 +∞cpnf 11212 -∞cmnf 11213 (,)cioo 13313 [,]cicc 13316 volcvol 25371 MblFncmbf 25522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 df-mbf 25527 |
| This theorem is referenced by: mbfimasn 25540 |
| Copyright terms: Public domain | W3C validator |