Step | Hyp | Ref
| Expression |
1 | | qtopomap.5 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
2 | | qtopomap.4 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
3 | | qtopomap.6 |
. . 3
⊢ (𝜑 → ran 𝐹 = 𝑌) |
4 | | qtopss 22866 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹)) |
5 | 1, 2, 3, 4 | syl3anc 1370 |
. 2
⊢ (𝜑 → 𝐾 ⊆ (𝐽 qTop 𝐹)) |
6 | | cntop1 22391 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
7 | 1, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
8 | | toptopon2 22067 |
. . . . . . . . 9
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
9 | 7, 8 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
10 | | cnf2 22400 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐾 ∈
(TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶𝑌) |
11 | 9, 2, 1, 10 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → 𝐹:∪ 𝐽⟶𝑌) |
12 | 11 | ffnd 6601 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn ∪ 𝐽) |
13 | | df-fo 6439 |
. . . . . 6
⊢ (𝐹:∪
𝐽–onto→𝑌 ↔ (𝐹 Fn ∪ 𝐽 ∧ ran 𝐹 = 𝑌)) |
14 | 12, 3, 13 | sylanbrc 583 |
. . . . 5
⊢ (𝜑 → 𝐹:∪ 𝐽–onto→𝑌) |
15 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
16 | 15 | elqtop2 22852 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝐹:∪
𝐽–onto→𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) |
17 | 7, 14, 16 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽))) |
18 | 14 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝐹:∪ 𝐽–onto→𝑌) |
19 | | difss 4066 |
. . . . . . . . 9
⊢ (𝑌 ∖ 𝑦) ⊆ 𝑌 |
20 | | foimacnv 6733 |
. . . . . . . . 9
⊢ ((𝐹:∪
𝐽–onto→𝑌 ∧ (𝑌 ∖ 𝑦) ⊆ 𝑌) → (𝐹 “ (◡𝐹 “ (𝑌 ∖ 𝑦))) = (𝑌 ∖ 𝑦)) |
21 | 18, 19, 20 | sylancl 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ (𝑌 ∖ 𝑦))) = (𝑌 ∖ 𝑦)) |
22 | 2 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝐾 ∈ (TopOn‘𝑌)) |
23 | | toponuni 22063 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
24 | 22, 23 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑌 = ∪ 𝐾) |
25 | 24 | difeq1d 4056 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝑌 ∖ 𝑦) = (∪ 𝐾 ∖ 𝑦)) |
26 | 21, 25 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ (𝑌 ∖ 𝑦))) = (∪ 𝐾 ∖ 𝑦)) |
27 | | imaeq2 5965 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐹 “ (𝑌 ∖ 𝑦)) → (𝐹 “ 𝑥) = (𝐹 “ (◡𝐹 “ (𝑌 ∖ 𝑦)))) |
28 | 27 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑥 = (◡𝐹 “ (𝑌 ∖ 𝑦)) → ((𝐹 “ 𝑥) ∈ (Clsd‘𝐾) ↔ (𝐹 “ (◡𝐹 “ (𝑌 ∖ 𝑦))) ∈ (Clsd‘𝐾))) |
29 | | qtopcmap.7 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐹 “ 𝑥) ∈ (Clsd‘𝐾)) |
30 | 29 | ralrimiva 3103 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹 “ 𝑥) ∈ (Clsd‘𝐾)) |
31 | 30 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹 “ 𝑥) ∈ (Clsd‘𝐾)) |
32 | | fofun 6689 |
. . . . . . . . . . 11
⊢ (𝐹:∪
𝐽–onto→𝑌 → Fun 𝐹) |
33 | | funcnvcnv 6501 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → Fun ◡◡𝐹) |
34 | | imadif 6518 |
. . . . . . . . . . 11
⊢ (Fun
◡◡𝐹 → (◡𝐹 “ (𝑌 ∖ 𝑦)) = ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝑦))) |
35 | 18, 32, 33, 34 | 4syl 19 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ (𝑌 ∖ 𝑦)) = ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝑦))) |
36 | 11 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝐹:∪ 𝐽⟶𝑌) |
37 | | fimacnv 6622 |
. . . . . . . . . . . 12
⊢ (𝐹:∪
𝐽⟶𝑌 → (◡𝐹 “ 𝑌) = ∪ 𝐽) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ 𝑌) = ∪ 𝐽) |
39 | 38 | difeq1d 4056 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → ((◡𝐹 “ 𝑌) ∖ (◡𝐹 “ 𝑦)) = (∪ 𝐽 ∖ (◡𝐹 “ 𝑦))) |
40 | 35, 39 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ (𝑌 ∖ 𝑦)) = (∪ 𝐽 ∖ (◡𝐹 “ 𝑦))) |
41 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝐽 ∈ Top) |
42 | | simprr 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ 𝑦) ∈ 𝐽) |
43 | 15 | opncld 22184 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑦) ∈ 𝐽) → (∪ 𝐽 ∖ (◡𝐹 “ 𝑦)) ∈ (Clsd‘𝐽)) |
44 | 41, 42, 43 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (∪
𝐽 ∖ (◡𝐹 “ 𝑦)) ∈ (Clsd‘𝐽)) |
45 | 40, 44 | eqeltrd 2839 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (◡𝐹 “ (𝑌 ∖ 𝑦)) ∈ (Clsd‘𝐽)) |
46 | 28, 31, 45 | rspcdva 3562 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝐹 “ (◡𝐹 “ (𝑌 ∖ 𝑦))) ∈ (Clsd‘𝐾)) |
47 | 26, 46 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (∪
𝐾 ∖ 𝑦) ∈ (Clsd‘𝐾)) |
48 | | topontop 22062 |
. . . . . . . 8
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
49 | 22, 48 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝐾 ∈ Top) |
50 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑦 ⊆ 𝑌) |
51 | 50, 24 | sseqtrd 3961 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑦 ⊆ ∪ 𝐾) |
52 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ 𝐾 =
∪ 𝐾 |
53 | 52 | isopn2 22183 |
. . . . . . 7
⊢ ((𝐾 ∈ Top ∧ 𝑦 ⊆ ∪ 𝐾)
→ (𝑦 ∈ 𝐾 ↔ (∪ 𝐾
∖ 𝑦) ∈
(Clsd‘𝐾))) |
54 | 49, 51, 53 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → (𝑦 ∈ 𝐾 ↔ (∪ 𝐾 ∖ 𝑦) ∈ (Clsd‘𝐾))) |
55 | 47, 54 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽)) → 𝑦 ∈ 𝐾) |
56 | 55 | ex 413 |
. . . 4
⊢ (𝜑 → ((𝑦 ⊆ 𝑌 ∧ (◡𝐹 “ 𝑦) ∈ 𝐽) → 𝑦 ∈ 𝐾)) |
57 | 17, 56 | sylbid 239 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦 ∈ 𝐾)) |
58 | 57 | ssrdv 3927 |
. 2
⊢ (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾) |
59 | 5, 58 | eqssd 3938 |
1
⊢ (𝜑 → 𝐾 = (𝐽 qTop 𝐹)) |