MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmap Structured version   Visualization version   GIF version

Theorem qtopcmap 23622
Description: If 𝐹 is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
qtopomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
qtopomap.6 (𝜑 → ran 𝐹 = 𝑌)
qtopcmap.7 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
Assertion
Ref Expression
qtopcmap (𝜑𝐾 = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑌

Proof of Theorem qtopcmap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 qtopomap.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 qtopomap.6 . . 3 (𝜑 → ran 𝐹 = 𝑌)
4 qtopss 23618 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))
51, 2, 3, 4syl3anc 1373 . 2 (𝜑𝐾 ⊆ (𝐽 qTop 𝐹))
6 cntop1 23143 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
71, 6syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
8 toptopon2 22821 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
97, 8sylib 218 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
10 cnf2 23152 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
119, 2, 1, 10syl3anc 1373 . . . . . . 7 (𝜑𝐹: 𝐽𝑌)
1211ffnd 6657 . . . . . 6 (𝜑𝐹 Fn 𝐽)
13 df-fo 6492 . . . . . 6 (𝐹: 𝐽onto𝑌 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹 = 𝑌))
1412, 3, 13sylanbrc 583 . . . . 5 (𝜑𝐹: 𝐽onto𝑌)
15 eqid 2729 . . . . . 6 𝐽 = 𝐽
1615elqtop2 23604 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹: 𝐽onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
177, 14, 16syl2anc 584 . . . 4 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
1814adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐹: 𝐽onto𝑌)
19 difss 4089 . . . . . . . . 9 (𝑌𝑦) ⊆ 𝑌
20 foimacnv 6785 . . . . . . . . 9 ((𝐹: 𝐽onto𝑌 ∧ (𝑌𝑦) ⊆ 𝑌) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = (𝑌𝑦))
2118, 19, 20sylancl 586 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = (𝑌𝑦))
222adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐾 ∈ (TopOn‘𝑌))
23 toponuni 22817 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2422, 23syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑌 = 𝐾)
2524difeq1d 4078 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑌𝑦) = ( 𝐾𝑦))
2621, 25eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = ( 𝐾𝑦))
27 imaeq2 6011 . . . . . . . . 9 (𝑥 = (𝐹 “ (𝑌𝑦)) → (𝐹𝑥) = (𝐹 “ (𝐹 “ (𝑌𝑦))))
2827eleq1d 2813 . . . . . . . 8 (𝑥 = (𝐹 “ (𝑌𝑦)) → ((𝐹𝑥) ∈ (Clsd‘𝐾) ↔ (𝐹 “ (𝐹 “ (𝑌𝑦))) ∈ (Clsd‘𝐾)))
29 qtopcmap.7 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3029ralrimiva 3121 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))
3130adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))
32 fofun 6741 . . . . . . . . . . 11 (𝐹: 𝐽onto𝑌 → Fun 𝐹)
33 funcnvcnv 6553 . . . . . . . . . . 11 (Fun 𝐹 → Fun 𝐹)
34 imadif 6570 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝑌𝑦)) = ((𝐹𝑌) ∖ (𝐹𝑦)))
3518, 32, 33, 344syl 19 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) = ((𝐹𝑌) ∖ (𝐹𝑦)))
3611adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐹: 𝐽𝑌)
37 fimacnv 6678 . . . . . . . . . . . 12 (𝐹: 𝐽𝑌 → (𝐹𝑌) = 𝐽)
3836, 37syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑌) = 𝐽)
3938difeq1d 4078 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ((𝐹𝑌) ∖ (𝐹𝑦)) = ( 𝐽 ∖ (𝐹𝑦)))
4035, 39eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) = ( 𝐽 ∖ (𝐹𝑦)))
417adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐽 ∈ Top)
42 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑦) ∈ 𝐽)
4315opncld 22936 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑦) ∈ 𝐽) → ( 𝐽 ∖ (𝐹𝑦)) ∈ (Clsd‘𝐽))
4441, 42, 43syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ( 𝐽 ∖ (𝐹𝑦)) ∈ (Clsd‘𝐽))
4540, 44eqeltrd 2828 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) ∈ (Clsd‘𝐽))
4628, 31, 45rspcdva 3580 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) ∈ (Clsd‘𝐾))
4726, 46eqeltrrd 2829 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ( 𝐾𝑦) ∈ (Clsd‘𝐾))
48 topontop 22816 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
4922, 48syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐾 ∈ Top)
50 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑌)
5150, 24sseqtrd 3974 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦 𝐾)
52 eqid 2729 . . . . . . . 8 𝐾 = 𝐾
5352isopn2 22935 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → (𝑦𝐾 ↔ ( 𝐾𝑦) ∈ (Clsd‘𝐾)))
5449, 51, 53syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑦𝐾 ↔ ( 𝐾𝑦) ∈ (Clsd‘𝐾)))
5547, 54mpbird 257 . . . . 5 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝐾)
5655ex 412 . . . 4 (𝜑 → ((𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽) → 𝑦𝐾))
5717, 56sylbid 240 . . 3 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦𝐾))
5857ssrdv 3943 . 2 (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾)
595, 58eqssd 3955 1 (𝜑𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3902  wss 3905   cuni 4861  ccnv 5622  ran crn 5624  cima 5626  Fun wfun 6480   Fn wfn 6481  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353   qTop cqtop 17425  Topctop 22796  TopOnctopon 22813  Clsdccld 22919   Cn ccn 23127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-qtop 17429  df-top 22797  df-topon 22814  df-cld 22922  df-cn 23130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator