MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmap Structured version   Visualization version   GIF version

Theorem qtopcmap 22870
Description: If 𝐹 is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
qtopomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
qtopomap.6 (𝜑 → ran 𝐹 = 𝑌)
qtopcmap.7 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
Assertion
Ref Expression
qtopcmap (𝜑𝐾 = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑌

Proof of Theorem qtopcmap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 qtopomap.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 qtopomap.6 . . 3 (𝜑 → ran 𝐹 = 𝑌)
4 qtopss 22866 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))
51, 2, 3, 4syl3anc 1370 . 2 (𝜑𝐾 ⊆ (𝐽 qTop 𝐹))
6 cntop1 22391 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
71, 6syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
8 toptopon2 22067 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
97, 8sylib 217 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
10 cnf2 22400 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
119, 2, 1, 10syl3anc 1370 . . . . . . 7 (𝜑𝐹: 𝐽𝑌)
1211ffnd 6601 . . . . . 6 (𝜑𝐹 Fn 𝐽)
13 df-fo 6439 . . . . . 6 (𝐹: 𝐽onto𝑌 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹 = 𝑌))
1412, 3, 13sylanbrc 583 . . . . 5 (𝜑𝐹: 𝐽onto𝑌)
15 eqid 2738 . . . . . 6 𝐽 = 𝐽
1615elqtop2 22852 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹: 𝐽onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
177, 14, 16syl2anc 584 . . . 4 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
1814adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐹: 𝐽onto𝑌)
19 difss 4066 . . . . . . . . 9 (𝑌𝑦) ⊆ 𝑌
20 foimacnv 6733 . . . . . . . . 9 ((𝐹: 𝐽onto𝑌 ∧ (𝑌𝑦) ⊆ 𝑌) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = (𝑌𝑦))
2118, 19, 20sylancl 586 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = (𝑌𝑦))
222adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐾 ∈ (TopOn‘𝑌))
23 toponuni 22063 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2422, 23syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑌 = 𝐾)
2524difeq1d 4056 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑌𝑦) = ( 𝐾𝑦))
2621, 25eqtrd 2778 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = ( 𝐾𝑦))
27 imaeq2 5965 . . . . . . . . 9 (𝑥 = (𝐹 “ (𝑌𝑦)) → (𝐹𝑥) = (𝐹 “ (𝐹 “ (𝑌𝑦))))
2827eleq1d 2823 . . . . . . . 8 (𝑥 = (𝐹 “ (𝑌𝑦)) → ((𝐹𝑥) ∈ (Clsd‘𝐾) ↔ (𝐹 “ (𝐹 “ (𝑌𝑦))) ∈ (Clsd‘𝐾)))
29 qtopcmap.7 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3029ralrimiva 3103 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))
3130adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))
32 fofun 6689 . . . . . . . . . . 11 (𝐹: 𝐽onto𝑌 → Fun 𝐹)
33 funcnvcnv 6501 . . . . . . . . . . 11 (Fun 𝐹 → Fun 𝐹)
34 imadif 6518 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝑌𝑦)) = ((𝐹𝑌) ∖ (𝐹𝑦)))
3518, 32, 33, 344syl 19 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) = ((𝐹𝑌) ∖ (𝐹𝑦)))
3611adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐹: 𝐽𝑌)
37 fimacnv 6622 . . . . . . . . . . . 12 (𝐹: 𝐽𝑌 → (𝐹𝑌) = 𝐽)
3836, 37syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑌) = 𝐽)
3938difeq1d 4056 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ((𝐹𝑌) ∖ (𝐹𝑦)) = ( 𝐽 ∖ (𝐹𝑦)))
4035, 39eqtrd 2778 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) = ( 𝐽 ∖ (𝐹𝑦)))
417adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐽 ∈ Top)
42 simprr 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑦) ∈ 𝐽)
4315opncld 22184 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑦) ∈ 𝐽) → ( 𝐽 ∖ (𝐹𝑦)) ∈ (Clsd‘𝐽))
4441, 42, 43syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ( 𝐽 ∖ (𝐹𝑦)) ∈ (Clsd‘𝐽))
4540, 44eqeltrd 2839 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) ∈ (Clsd‘𝐽))
4628, 31, 45rspcdva 3562 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) ∈ (Clsd‘𝐾))
4726, 46eqeltrrd 2840 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ( 𝐾𝑦) ∈ (Clsd‘𝐾))
48 topontop 22062 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
4922, 48syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐾 ∈ Top)
50 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑌)
5150, 24sseqtrd 3961 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦 𝐾)
52 eqid 2738 . . . . . . . 8 𝐾 = 𝐾
5352isopn2 22183 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → (𝑦𝐾 ↔ ( 𝐾𝑦) ∈ (Clsd‘𝐾)))
5449, 51, 53syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑦𝐾 ↔ ( 𝐾𝑦) ∈ (Clsd‘𝐾)))
5547, 54mpbird 256 . . . . 5 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝐾)
5655ex 413 . . . 4 (𝜑 → ((𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽) → 𝑦𝐾))
5717, 56sylbid 239 . . 3 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦𝐾))
5857ssrdv 3927 . 2 (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾)
595, 58eqssd 3938 1 (𝜑𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cdif 3884  wss 3887   cuni 4839  ccnv 5588  ran crn 5590  cima 5592  Fun wfun 6427   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275   qTop cqtop 17214  Topctop 22042  TopOnctopon 22059  Clsdccld 22167   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-qtop 17218  df-top 22043  df-topon 22060  df-cld 22170  df-cn 22378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator