MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmap Structured version   Visualization version   GIF version

Theorem qtopcmap 23627
Description: If 𝐹 is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
qtopomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
qtopomap.6 (𝜑 → ran 𝐹 = 𝑌)
qtopcmap.7 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
Assertion
Ref Expression
qtopcmap (𝜑𝐾 = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑌

Proof of Theorem qtopcmap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 qtopomap.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 qtopomap.6 . . 3 (𝜑 → ran 𝐹 = 𝑌)
4 qtopss 23623 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))
51, 2, 3, 4syl3anc 1373 . 2 (𝜑𝐾 ⊆ (𝐽 qTop 𝐹))
6 cntop1 23148 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
71, 6syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
8 toptopon2 22826 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
97, 8sylib 218 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
10 cnf2 23157 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
119, 2, 1, 10syl3anc 1373 . . . . . . 7 (𝜑𝐹: 𝐽𝑌)
1211ffnd 6648 . . . . . 6 (𝜑𝐹 Fn 𝐽)
13 df-fo 6483 . . . . . 6 (𝐹: 𝐽onto𝑌 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹 = 𝑌))
1412, 3, 13sylanbrc 583 . . . . 5 (𝜑𝐹: 𝐽onto𝑌)
15 eqid 2730 . . . . . 6 𝐽 = 𝐽
1615elqtop2 23609 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹: 𝐽onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
177, 14, 16syl2anc 584 . . . 4 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
1814adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐹: 𝐽onto𝑌)
19 difss 4084 . . . . . . . . 9 (𝑌𝑦) ⊆ 𝑌
20 foimacnv 6776 . . . . . . . . 9 ((𝐹: 𝐽onto𝑌 ∧ (𝑌𝑦) ⊆ 𝑌) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = (𝑌𝑦))
2118, 19, 20sylancl 586 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = (𝑌𝑦))
222adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐾 ∈ (TopOn‘𝑌))
23 toponuni 22822 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2422, 23syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑌 = 𝐾)
2524difeq1d 4073 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑌𝑦) = ( 𝐾𝑦))
2621, 25eqtrd 2765 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = ( 𝐾𝑦))
27 imaeq2 6002 . . . . . . . . 9 (𝑥 = (𝐹 “ (𝑌𝑦)) → (𝐹𝑥) = (𝐹 “ (𝐹 “ (𝑌𝑦))))
2827eleq1d 2814 . . . . . . . 8 (𝑥 = (𝐹 “ (𝑌𝑦)) → ((𝐹𝑥) ∈ (Clsd‘𝐾) ↔ (𝐹 “ (𝐹 “ (𝑌𝑦))) ∈ (Clsd‘𝐾)))
29 qtopcmap.7 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3029ralrimiva 3122 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))
3130adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))
32 fofun 6732 . . . . . . . . . . 11 (𝐹: 𝐽onto𝑌 → Fun 𝐹)
33 funcnvcnv 6544 . . . . . . . . . . 11 (Fun 𝐹 → Fun 𝐹)
34 imadif 6561 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝑌𝑦)) = ((𝐹𝑌) ∖ (𝐹𝑦)))
3518, 32, 33, 344syl 19 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) = ((𝐹𝑌) ∖ (𝐹𝑦)))
3611adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐹: 𝐽𝑌)
37 fimacnv 6669 . . . . . . . . . . . 12 (𝐹: 𝐽𝑌 → (𝐹𝑌) = 𝐽)
3836, 37syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑌) = 𝐽)
3938difeq1d 4073 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ((𝐹𝑌) ∖ (𝐹𝑦)) = ( 𝐽 ∖ (𝐹𝑦)))
4035, 39eqtrd 2765 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) = ( 𝐽 ∖ (𝐹𝑦)))
417adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐽 ∈ Top)
42 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑦) ∈ 𝐽)
4315opncld 22941 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑦) ∈ 𝐽) → ( 𝐽 ∖ (𝐹𝑦)) ∈ (Clsd‘𝐽))
4441, 42, 43syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ( 𝐽 ∖ (𝐹𝑦)) ∈ (Clsd‘𝐽))
4540, 44eqeltrd 2829 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) ∈ (Clsd‘𝐽))
4628, 31, 45rspcdva 3576 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) ∈ (Clsd‘𝐾))
4726, 46eqeltrrd 2830 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ( 𝐾𝑦) ∈ (Clsd‘𝐾))
48 topontop 22821 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
4922, 48syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐾 ∈ Top)
50 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑌)
5150, 24sseqtrd 3969 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦 𝐾)
52 eqid 2730 . . . . . . . 8 𝐾 = 𝐾
5352isopn2 22940 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → (𝑦𝐾 ↔ ( 𝐾𝑦) ∈ (Clsd‘𝐾)))
5449, 51, 53syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑦𝐾 ↔ ( 𝐾𝑦) ∈ (Clsd‘𝐾)))
5547, 54mpbird 257 . . . . 5 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝐾)
5655ex 412 . . . 4 (𝜑 → ((𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽) → 𝑦𝐾))
5717, 56sylbid 240 . . 3 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦𝐾))
5857ssrdv 3938 . 2 (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾)
595, 58eqssd 3950 1 (𝜑𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  cdif 3897  wss 3900   cuni 4857  ccnv 5613  ran crn 5615  cima 5617  Fun wfun 6471   Fn wfn 6472  wf 6473  ontowfo 6475  cfv 6477  (class class class)co 7341   qTop cqtop 17399  Topctop 22801  TopOnctopon 22818  Clsdccld 22924   Cn ccn 23132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-qtop 17403  df-top 22802  df-topon 22819  df-cld 22927  df-cn 23135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator