Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmap Structured version   Visualization version   GIF version

Theorem qtopcmap 22313
 Description: If 𝐹 is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
qtopomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
qtopomap.6 (𝜑 → ran 𝐹 = 𝑌)
qtopcmap.7 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
Assertion
Ref Expression
qtopcmap (𝜑𝐾 = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑌

Proof of Theorem qtopcmap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 qtopomap.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 qtopomap.6 . . 3 (𝜑 → ran 𝐹 = 𝑌)
4 qtopss 22309 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))
51, 2, 3, 4syl3anc 1368 . 2 (𝜑𝐾 ⊆ (𝐽 qTop 𝐹))
6 cntop1 21834 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
71, 6syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
8 toptopon2 21512 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
97, 8sylib 221 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
10 cnf2 21843 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
119, 2, 1, 10syl3anc 1368 . . . . . . 7 (𝜑𝐹: 𝐽𝑌)
1211ffnd 6496 . . . . . 6 (𝜑𝐹 Fn 𝐽)
13 df-fo 6342 . . . . . 6 (𝐹: 𝐽onto𝑌 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹 = 𝑌))
1412, 3, 13sylanbrc 586 . . . . 5 (𝜑𝐹: 𝐽onto𝑌)
15 eqid 2824 . . . . . 6 𝐽 = 𝐽
1615elqtop2 22295 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹: 𝐽onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
177, 14, 16syl2anc 587 . . . 4 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
1814adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐹: 𝐽onto𝑌)
19 difss 4092 . . . . . . . . 9 (𝑌𝑦) ⊆ 𝑌
20 foimacnv 6613 . . . . . . . . 9 ((𝐹: 𝐽onto𝑌 ∧ (𝑌𝑦) ⊆ 𝑌) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = (𝑌𝑦))
2118, 19, 20sylancl 589 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = (𝑌𝑦))
222adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐾 ∈ (TopOn‘𝑌))
23 toponuni 21508 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2422, 23syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑌 = 𝐾)
2524difeq1d 4082 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑌𝑦) = ( 𝐾𝑦))
2621, 25eqtrd 2859 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = ( 𝐾𝑦))
27 imaeq2 5906 . . . . . . . . 9 (𝑥 = (𝐹 “ (𝑌𝑦)) → (𝐹𝑥) = (𝐹 “ (𝐹 “ (𝑌𝑦))))
2827eleq1d 2900 . . . . . . . 8 (𝑥 = (𝐹 “ (𝑌𝑦)) → ((𝐹𝑥) ∈ (Clsd‘𝐾) ↔ (𝐹 “ (𝐹 “ (𝑌𝑦))) ∈ (Clsd‘𝐾)))
29 qtopcmap.7 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3029ralrimiva 3176 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))
3130adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))
32 fofun 6572 . . . . . . . . . . 11 (𝐹: 𝐽onto𝑌 → Fun 𝐹)
33 funcnvcnv 6402 . . . . . . . . . . 11 (Fun 𝐹 → Fun 𝐹)
34 imadif 6419 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝑌𝑦)) = ((𝐹𝑌) ∖ (𝐹𝑦)))
3518, 32, 33, 344syl 19 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) = ((𝐹𝑌) ∖ (𝐹𝑦)))
3611adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐹: 𝐽𝑌)
37 fimacnv 6820 . . . . . . . . . . . 12 (𝐹: 𝐽𝑌 → (𝐹𝑌) = 𝐽)
3836, 37syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑌) = 𝐽)
3938difeq1d 4082 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ((𝐹𝑌) ∖ (𝐹𝑦)) = ( 𝐽 ∖ (𝐹𝑦)))
4035, 39eqtrd 2859 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) = ( 𝐽 ∖ (𝐹𝑦)))
417adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐽 ∈ Top)
42 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑦) ∈ 𝐽)
4315opncld 21627 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑦) ∈ 𝐽) → ( 𝐽 ∖ (𝐹𝑦)) ∈ (Clsd‘𝐽))
4441, 42, 43syl2anc 587 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ( 𝐽 ∖ (𝐹𝑦)) ∈ (Clsd‘𝐽))
4540, 44eqeltrd 2916 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) ∈ (Clsd‘𝐽))
4628, 31, 45rspcdva 3610 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) ∈ (Clsd‘𝐾))
4726, 46eqeltrrd 2917 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ( 𝐾𝑦) ∈ (Clsd‘𝐾))
48 topontop 21507 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
4922, 48syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐾 ∈ Top)
50 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑌)
5150, 24sseqtrd 3991 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦 𝐾)
52 eqid 2824 . . . . . . . 8 𝐾 = 𝐾
5352isopn2 21626 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → (𝑦𝐾 ↔ ( 𝐾𝑦) ∈ (Clsd‘𝐾)))
5449, 51, 53syl2anc 587 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑦𝐾 ↔ ( 𝐾𝑦) ∈ (Clsd‘𝐾)))
5547, 54mpbird 260 . . . . 5 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝐾)
5655ex 416 . . . 4 (𝜑 → ((𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽) → 𝑦𝐾))
5717, 56sylbid 243 . . 3 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦𝐾))
5857ssrdv 3957 . 2 (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾)
595, 58eqssd 3968 1 (𝜑𝐾 = (𝐽 qTop 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3132   ∖ cdif 3915   ⊆ wss 3918  ∪ cuni 4819  ◡ccnv 5535  ran crn 5537   “ cima 5539  Fun wfun 6330   Fn wfn 6331  ⟶wf 6332  –onto→wfo 6334  ‘cfv 6336  (class class class)co 7138   qTop cqtop 16765  Topctop 21487  TopOnctopon 21504  Clsdccld 21610   Cn ccn 21818 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-map 8391  df-qtop 16769  df-top 21488  df-topon 21505  df-cld 21613  df-cn 21821 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator