MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmap Structured version   Visualization version   GIF version

Theorem qtopcmap 21893
Description: If 𝐹 is a surjective continuous closed map, then it is a quotient map. (A closed map is a function that maps closed sets to closed sets.) (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopomap.4 (𝜑𝐾 ∈ (TopOn‘𝑌))
qtopomap.5 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
qtopomap.6 (𝜑 → ran 𝐹 = 𝑌)
qtopcmap.7 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
Assertion
Ref Expression
qtopcmap (𝜑𝐾 = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝜑,𝑥   𝑥,𝑌

Proof of Theorem qtopcmap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qtopomap.5 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 qtopomap.4 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 qtopomap.6 . . 3 (𝜑 → ran 𝐹 = 𝑌)
4 qtopss 21889 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 = 𝑌) → 𝐾 ⊆ (𝐽 qTop 𝐹))
51, 2, 3, 4syl3anc 1494 . 2 (𝜑𝐾 ⊆ (𝐽 qTop 𝐹))
6 cntop1 21415 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
71, 6syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
8 eqid 2825 . . . . . . . . . 10 𝐽 = 𝐽
98toptopon 21092 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
107, 9sylib 210 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
11 cnf2 21424 . . . . . . . 8 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽𝑌)
1210, 2, 1, 11syl3anc 1494 . . . . . . 7 (𝜑𝐹: 𝐽𝑌)
1312ffnd 6279 . . . . . 6 (𝜑𝐹 Fn 𝐽)
14 df-fo 6129 . . . . . 6 (𝐹: 𝐽onto𝑌 ↔ (𝐹 Fn 𝐽 ∧ ran 𝐹 = 𝑌))
1513, 3, 14sylanbrc 578 . . . . 5 (𝜑𝐹: 𝐽onto𝑌)
168elqtop2 21875 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹: 𝐽onto𝑌) → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
177, 15, 16syl2anc 579 . . . 4 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) ↔ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)))
1815adantr 474 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐹: 𝐽onto𝑌)
19 difss 3964 . . . . . . . . 9 (𝑌𝑦) ⊆ 𝑌
20 foimacnv 6395 . . . . . . . . 9 ((𝐹: 𝐽onto𝑌 ∧ (𝑌𝑦) ⊆ 𝑌) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = (𝑌𝑦))
2118, 19, 20sylancl 580 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = (𝑌𝑦))
222adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐾 ∈ (TopOn‘𝑌))
23 toponuni 21089 . . . . . . . . . 10 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2422, 23syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑌 = 𝐾)
2524difeq1d 3954 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑌𝑦) = ( 𝐾𝑦))
2621, 25eqtrd 2861 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) = ( 𝐾𝑦))
27 imaeq2 5703 . . . . . . . . 9 (𝑥 = (𝐹 “ (𝑌𝑦)) → (𝐹𝑥) = (𝐹 “ (𝐹 “ (𝑌𝑦))))
2827eleq1d 2891 . . . . . . . 8 (𝑥 = (𝐹 “ (𝑌𝑦)) → ((𝐹𝑥) ∈ (Clsd‘𝐾) ↔ (𝐹 “ (𝐹 “ (𝑌𝑦))) ∈ (Clsd‘𝐾)))
29 qtopcmap.7 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Clsd‘𝐽)) → (𝐹𝑥) ∈ (Clsd‘𝐾))
3029ralrimiva 3175 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))
3130adantr 474 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ∀𝑥 ∈ (Clsd‘𝐽)(𝐹𝑥) ∈ (Clsd‘𝐾))
32 fofun 6354 . . . . . . . . . . 11 (𝐹: 𝐽onto𝑌 → Fun 𝐹)
33 funcnvcnv 6189 . . . . . . . . . . 11 (Fun 𝐹 → Fun 𝐹)
34 imadif 6206 . . . . . . . . . . 11 (Fun 𝐹 → (𝐹 “ (𝑌𝑦)) = ((𝐹𝑌) ∖ (𝐹𝑦)))
3518, 32, 33, 344syl 19 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) = ((𝐹𝑌) ∖ (𝐹𝑦)))
3612adantr 474 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐹: 𝐽𝑌)
37 fimacnv 6596 . . . . . . . . . . . 12 (𝐹: 𝐽𝑌 → (𝐹𝑌) = 𝐽)
3836, 37syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑌) = 𝐽)
3938difeq1d 3954 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ((𝐹𝑌) ∖ (𝐹𝑦)) = ( 𝐽 ∖ (𝐹𝑦)))
4035, 39eqtrd 2861 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) = ( 𝐽 ∖ (𝐹𝑦)))
417adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐽 ∈ Top)
42 simprr 789 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹𝑦) ∈ 𝐽)
438opncld 21208 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑦) ∈ 𝐽) → ( 𝐽 ∖ (𝐹𝑦)) ∈ (Clsd‘𝐽))
4441, 42, 43syl2anc 579 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ( 𝐽 ∖ (𝐹𝑦)) ∈ (Clsd‘𝐽))
4540, 44eqeltrd 2906 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝑌𝑦)) ∈ (Clsd‘𝐽))
4628, 31, 45rspcdva 3532 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝐹 “ (𝐹 “ (𝑌𝑦))) ∈ (Clsd‘𝐾))
4726, 46eqeltrrd 2907 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → ( 𝐾𝑦) ∈ (Clsd‘𝐾))
48 topontop 21088 . . . . . . . 8 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
4922, 48syl 17 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝐾 ∈ Top)
50 simprl 787 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝑌)
5150, 24sseqtrd 3866 . . . . . . 7 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦 𝐾)
52 eqid 2825 . . . . . . . 8 𝐾 = 𝐾
5352isopn2 21207 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑦 𝐾) → (𝑦𝐾 ↔ ( 𝐾𝑦) ∈ (Clsd‘𝐾)))
5449, 51, 53syl2anc 579 . . . . . 6 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → (𝑦𝐾 ↔ ( 𝐾𝑦) ∈ (Clsd‘𝐾)))
5547, 54mpbird 249 . . . . 5 ((𝜑 ∧ (𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽)) → 𝑦𝐾)
5655ex 403 . . . 4 (𝜑 → ((𝑦𝑌 ∧ (𝐹𝑦) ∈ 𝐽) → 𝑦𝐾))
5717, 56sylbid 232 . . 3 (𝜑 → (𝑦 ∈ (𝐽 qTop 𝐹) → 𝑦𝐾))
5857ssrdv 3833 . 2 (𝜑 → (𝐽 qTop 𝐹) ⊆ 𝐾)
595, 58eqssd 3844 1 (𝜑𝐾 = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wral 3117  cdif 3795  wss 3798   cuni 4658  ccnv 5341  ran crn 5343  cima 5345  Fun wfun 6117   Fn wfn 6118  wf 6119  ontowfo 6121  cfv 6123  (class class class)co 6905   qTop cqtop 16516  Topctop 21068  TopOnctopon 21085  Clsdccld 21191   Cn ccn 21399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-map 8124  df-qtop 16520  df-top 21069  df-topon 21086  df-cld 21194  df-cn 21402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator