MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cnv Structured version   Visualization version   GIF version

Theorem f1cnv 6783
Description: The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cnv (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)

Proof of Theorem f1cnv
StepHypRef Expression
1 f1f1orn 6770 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
2 f1ocnv 6771 . 2 (𝐹:𝐴1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto𝐴)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ccnv 5613  ran crn 5615  1-1wf1 6474  1-1-ontowf1o 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484
This theorem is referenced by:  f1dmex  7884  f1domfi  9085  fin1a2lem7  10289  cycpmco2f1  33083  cycpmco2rn  33084  cycpmco2lem2  33086  cycpmco2lem3  33087  cycpmco2lem4  33088  cycpmco2lem5  33089  cycpmco2lem6  33090  cycpmco2lem7  33091  cycpmco2  33092  diophrw  42771
  Copyright terms: Public domain W3C validator