Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1cnv | Structured version Visualization version GIF version |
Description: The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.) |
Ref | Expression |
---|---|
f1cnv | ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f1orn 6727 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
2 | f1ocnv 6728 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ◡ccnv 5588 ran crn 5590 –1-1→wf1 6430 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: f1dmex 7799 f1domfi 8967 fin1a2lem7 10162 cycpmco2f1 31391 cycpmco2rn 31392 cycpmco2lem2 31394 cycpmco2lem3 31395 cycpmco2lem4 31396 cycpmco2lem5 31397 cycpmco2lem6 31398 cycpmco2lem7 31399 cycpmco2 31400 diophrw 40581 |
Copyright terms: Public domain | W3C validator |