| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1cnv | Structured version Visualization version GIF version | ||
| Description: The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.) |
| Ref | Expression |
|---|---|
| f1cnv | ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f1orn 6782 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
| 2 | f1ocnv 6783 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ◡ccnv 5620 ran crn 5622 –1-1→wf1 6486 –1-1-onto→wf1o 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 |
| This theorem is referenced by: f1dmex 7898 f1domfi 9100 fin1a2lem7 10307 cycpmco2f1 33104 cycpmco2rn 33105 cycpmco2lem2 33107 cycpmco2lem3 33108 cycpmco2lem4 33109 cycpmco2lem5 33110 cycpmco2lem6 33111 cycpmco2lem7 33112 cycpmco2 33113 diophrw 42866 |
| Copyright terms: Public domain | W3C validator |