MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cnv Structured version   Visualization version   GIF version

Theorem f1cnv 6806
Description: The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.)
Assertion
Ref Expression
f1cnv (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)

Proof of Theorem f1cnv
StepHypRef Expression
1 f1f1orn 6793 . 2 (𝐹:𝐴1-1𝐵𝐹:𝐴1-1-onto→ran 𝐹)
2 f1ocnv 6794 . 2 (𝐹:𝐴1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto𝐴)
31, 2syl 17 1 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ccnv 5630  ran crn 5632  1-1wf1 6496  1-1-ontowf1o 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506
This theorem is referenced by:  f1dmex  7915  f1domfi  9122  fin1a2lem7  10335  cycpmco2f1  33096  cycpmco2rn  33097  cycpmco2lem2  33099  cycpmco2lem3  33100  cycpmco2lem4  33101  cycpmco2lem5  33102  cycpmco2lem6  33103  cycpmco2lem7  33104  cycpmco2  33105  diophrw  42740
  Copyright terms: Public domain W3C validator