![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cnv | Structured version Visualization version GIF version |
Description: The converse of an injective function is bijective. (Contributed by FL, 11-Nov-2011.) |
Ref | Expression |
---|---|
f1cnv | ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f1orn 6850 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴–1-1-onto→ran 𝐹) | |
2 | f1ocnv 6851 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ◡ccnv 5677 ran crn 5679 –1-1→wf1 6545 –1-1-onto→wf1o 6547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 |
This theorem is referenced by: f1dmex 7960 f1domfi 9208 fin1a2lem7 10429 cycpmco2f1 32845 cycpmco2rn 32846 cycpmco2lem2 32848 cycpmco2lem3 32849 cycpmco2lem4 32850 cycpmco2lem5 32851 cycpmco2lem6 32852 cycpmco2lem7 32853 cycpmco2 32854 diophrw 42179 |
Copyright terms: Public domain | W3C validator |