Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetcALTV2lem1 Structured version   Visualization version   GIF version

Theorem funcringcsetcALTV2lem1 46924
Description: Lemma 1 for funcringcsetcALTV2 46933. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV2.r 𝑅 = (RingCatβ€˜π‘ˆ)
funcringcsetcALTV2.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcringcsetcALTV2.b 𝐡 = (Baseβ€˜π‘…)
funcringcsetcALTV2.c 𝐢 = (Baseβ€˜π‘†)
funcringcsetcALTV2.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcringcsetcALTV2.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
Assertion
Ref Expression
funcringcsetcALTV2lem1 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) = (Baseβ€˜π‘‹))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑋   πœ‘,π‘₯
Allowed substitution hints:   𝐢(π‘₯)   𝑅(π‘₯)   𝑆(π‘₯)   π‘ˆ(π‘₯)   𝐹(π‘₯)

Proof of Theorem funcringcsetcALTV2lem1
StepHypRef Expression
1 funcringcsetcALTV2.f . . 3 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
21adantr 481 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
3 fveq2 6891 . . 3 (π‘₯ = 𝑋 β†’ (Baseβ€˜π‘₯) = (Baseβ€˜π‘‹))
43adantl 482 . 2 (((πœ‘ ∧ 𝑋 ∈ 𝐡) ∧ π‘₯ = 𝑋) β†’ (Baseβ€˜π‘₯) = (Baseβ€˜π‘‹))
5 simpr 485 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
6 fvexd 6906 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (Baseβ€˜π‘‹) ∈ V)
72, 4, 5, 6fvmptd 7005 1 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) = (Baseβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   ↦ cmpt 5231  β€˜cfv 6543  WUnicwun 10694  Basecbs 17143  SetCatcsetc 18024  RingCatcringc 46891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by:  funcringcsetcALTV2lem2  46925  funcringcsetcALTV2lem7  46930  funcringcsetcALTV2lem8  46931  funcringcsetcALTV2lem9  46932
  Copyright terms: Public domain W3C validator