| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for funcringcsetcALTV2 48173. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
| funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
| funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| Ref | Expression |
|---|---|
| funcringcsetcALTV2lem1 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcringcsetcALTV2.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| 3 | fveq2 6886 | . . 3 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋)) |
| 5 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | fvexd 6901 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ V) | |
| 7 | 2, 4, 5, 6 | fvmptd 7003 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ↦ cmpt 5205 ‘cfv 6541 WUnicwun 10722 Basecbs 17229 SetCatcsetc 18091 RingCatcringc 20613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 |
| This theorem is referenced by: funcringcsetcALTV2lem2 48165 funcringcsetcALTV2lem7 48170 funcringcsetcALTV2lem8 48171 funcringcsetcALTV2lem9 48172 |
| Copyright terms: Public domain | W3C validator |