Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetcALTV2lem1 Structured version   Visualization version   GIF version

Theorem funcringcsetcALTV2lem1 47464
Description: Lemma 1 for funcringcsetcALTV2 47473. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV2.r 𝑅 = (RingCatβ€˜π‘ˆ)
funcringcsetcALTV2.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcringcsetcALTV2.b 𝐡 = (Baseβ€˜π‘…)
funcringcsetcALTV2.c 𝐢 = (Baseβ€˜π‘†)
funcringcsetcALTV2.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcringcsetcALTV2.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
Assertion
Ref Expression
funcringcsetcALTV2lem1 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) = (Baseβ€˜π‘‹))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑋   πœ‘,π‘₯
Allowed substitution hints:   𝐢(π‘₯)   𝑅(π‘₯)   𝑆(π‘₯)   π‘ˆ(π‘₯)   𝐹(π‘₯)

Proof of Theorem funcringcsetcALTV2lem1
StepHypRef Expression
1 funcringcsetcALTV2.f . . 3 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
21adantr 479 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
3 fveq2 6894 . . 3 (π‘₯ = 𝑋 β†’ (Baseβ€˜π‘₯) = (Baseβ€˜π‘‹))
43adantl 480 . 2 (((πœ‘ ∧ 𝑋 ∈ 𝐡) ∧ π‘₯ = 𝑋) β†’ (Baseβ€˜π‘₯) = (Baseβ€˜π‘‹))
5 simpr 483 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
6 fvexd 6909 . 2 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (Baseβ€˜π‘‹) ∈ V)
72, 4, 5, 6fvmptd 7009 1 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) = (Baseβ€˜π‘‹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098  Vcvv 3463   ↦ cmpt 5231  β€˜cfv 6547  WUnicwun 10723  Basecbs 17179  SetCatcsetc 18063  RingCatcringc 20582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6499  df-fun 6549  df-fv 6555
This theorem is referenced by:  funcringcsetcALTV2lem2  47465  funcringcsetcALTV2lem7  47470  funcringcsetcALTV2lem8  47471  funcringcsetcALTV2lem9  47472
  Copyright terms: Public domain W3C validator