Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetcALTV2lem8 Structured version   Visualization version   GIF version

Theorem funcringcsetcALTV2lem8 42842
Description: Lemma 8 for funcringcsetcALTV2 42844. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV2.r 𝑅 = (RingCat‘𝑈)
funcringcsetcALTV2.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV2.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV2.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV2.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV2.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV2.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetcALTV2lem8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcringcsetcALTV2lem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6393 . . . 4 ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)–1-1-onto→(𝑋 RingHom 𝑌)
2 f1of 6356 . . . 4 (( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)–1-1-onto→(𝑋 RingHom 𝑌) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶(𝑋 RingHom 𝑌))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶(𝑋 RingHom 𝑌))
4 eqid 2799 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
5 eqid 2799 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
64, 5rhmf 19044 . . . . 5 (𝑓 ∈ (𝑋 RingHom 𝑌) → 𝑓:(Base‘𝑋)⟶(Base‘𝑌))
7 fvex 6424 . . . . . . . . . 10 (Base‘𝑌) ∈ V
8 fvex 6424 . . . . . . . . . 10 (Base‘𝑋) ∈ V
97, 8pm3.2i 463 . . . . . . . . 9 ((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V)
10 elmapg 8108 . . . . . . . . . 10 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ↔ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)))
1110bicomd 215 . . . . . . . . 9 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))))
129, 11mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))))
1312biimpa 469 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
14 simpr 478 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
15 funcringcsetcALTV2.r . . . . . . . . . . 11 𝑅 = (RingCat‘𝑈)
16 funcringcsetcALTV2.s . . . . . . . . . . 11 𝑆 = (SetCat‘𝑈)
17 funcringcsetcALTV2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
18 funcringcsetcALTV2.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
19 funcringcsetcALTV2.u . . . . . . . . . . 11 (𝜑𝑈 ∈ WUni)
20 funcringcsetcALTV2.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
2115, 16, 17, 18, 19, 20funcringcsetcALTV2lem1 42835 . . . . . . . . . 10 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
2214, 21sylan2 587 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) = (Base‘𝑌))
23 simpl 475 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2415, 16, 17, 18, 19, 20funcringcsetcALTV2lem1 42835 . . . . . . . . . 10 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
2523, 24sylan2 587 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) = (Base‘𝑋))
2622, 25oveq12d 6896 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑌) ↑𝑚 (𝐹𝑋)) = ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
2726adantr 473 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → ((𝐹𝑌) ↑𝑚 (𝐹𝑋)) = ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
2813, 27eleqtrrd 2881 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((𝐹𝑌) ↑𝑚 (𝐹𝑋)))
2928ex 402 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑𝑚 (𝐹𝑋))))
306, 29syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓 ∈ (𝑋 RingHom 𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑𝑚 (𝐹𝑋))))
3130ssrdv 3804 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 RingHom 𝑌) ⊆ ((𝐹𝑌) ↑𝑚 (𝐹𝑋)))
323, 31fssd 6270 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶((𝐹𝑌) ↑𝑚 (𝐹𝑋)))
33 funcringcsetcALTV2.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
3415, 16, 17, 18, 19, 20, 33funcringcsetcALTV2lem5 42839 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌)))
3519adantr 473 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑈 ∈ WUni)
36 eqid 2799 . . . 4 (Hom ‘𝑅) = (Hom ‘𝑅)
3723adantl 474 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3814adantl 474 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
3915, 17, 35, 36, 37, 38ringchom 42812 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(Hom ‘𝑅)𝑌) = (𝑋 RingHom 𝑌))
40 eqid 2799 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4115, 16, 17, 18, 19, 20funcringcsetcALTV2lem2 42836 . . . . 5 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
4223, 41sylan2 587 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝑈)
4315, 16, 17, 18, 19, 20funcringcsetcALTV2lem2 42836 . . . . 5 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
4414, 43sylan2 587 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝑈)
4516, 35, 40, 42, 44setchom 17044 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) = ((𝐹𝑌) ↑𝑚 (𝐹𝑋)))
4634, 39, 45feq123d 6245 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) ↔ ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶((𝐹𝑌) ↑𝑚 (𝐹𝑋))))
4732, 46mpbird 249 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  Vcvv 3385  cmpt 4922   I cid 5219  cres 5314  wf 6097  1-1-ontowf1o 6100  cfv 6101  (class class class)co 6878  cmpt2 6880  𝑚 cmap 8095  WUnicwun 9810  Basecbs 16184  Hom chom 16278  SetCatcsetc 17039   RingHom crh 19030  RingCatcringc 42802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-wun 9812  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-7 11381  df-8 11382  df-9 11383  df-n0 11581  df-z 11667  df-dec 11784  df-uz 11931  df-fz 12581  df-struct 16186  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-hom 16291  df-cco 16292  df-0g 16417  df-resc 16785  df-setc 17040  df-estrc 17077  df-mhm 17650  df-ghm 17971  df-mgp 18806  df-ur 18818  df-ring 18865  df-rnghom 19033  df-ringc 42804
This theorem is referenced by:  funcringcsetcALTV2  42844
  Copyright terms: Public domain W3C validator