Step | Hyp | Ref
| Expression |
1 | | f1oi 6754 |
. . . 4
⊢ ( I
↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)–1-1-onto→(𝑋 RingHom 𝑌) |
2 | | f1of 6716 |
. . . 4
⊢ (( I
↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)–1-1-onto→(𝑋 RingHom 𝑌) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶(𝑋 RingHom 𝑌)) |
3 | 1, 2 | mp1i 13 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶(𝑋 RingHom 𝑌)) |
4 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) |
5 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑌) =
(Base‘𝑌) |
6 | 4, 5 | rhmf 19970 |
. . . . 5
⊢ (𝑓 ∈ (𝑋 RingHom 𝑌) → 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) |
7 | | fvex 6787 |
. . . . . . . . . 10
⊢
(Base‘𝑌)
∈ V |
8 | | fvex 6787 |
. . . . . . . . . 10
⊢
(Base‘𝑋)
∈ V |
9 | 7, 8 | pm3.2i 471 |
. . . . . . . . 9
⊢
((Base‘𝑌)
∈ V ∧ (Base‘𝑋) ∈ V) |
10 | | elmapg 8628 |
. . . . . . . . . 10
⊢
(((Base‘𝑌)
∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝑓:(Base‘𝑋)⟶(Base‘𝑌))) |
11 | 10 | bicomd 222 |
. . . . . . . . 9
⊢
(((Base‘𝑌)
∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))) |
12 | 9, 11 | mp1i 13 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))) |
13 | 12 | biimpa 477 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) |
14 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
15 | | funcringcsetcALTV2.r |
. . . . . . . . . . 11
⊢ 𝑅 = (RingCat‘𝑈) |
16 | | funcringcsetcALTV2.s |
. . . . . . . . . . 11
⊢ 𝑆 = (SetCat‘𝑈) |
17 | | funcringcsetcALTV2.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
18 | | funcringcsetcALTV2.c |
. . . . . . . . . . 11
⊢ 𝐶 = (Base‘𝑆) |
19 | | funcringcsetcALTV2.u |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ∈ WUni) |
20 | | funcringcsetcALTV2.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
21 | 15, 16, 17, 18, 19, 20 | funcringcsetcALTV2lem1 45594 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) = (Base‘𝑌)) |
22 | 14, 21 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘𝑌) = (Base‘𝑌)) |
23 | | simpl 483 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
24 | 15, 16, 17, 18, 19, 20 | funcringcsetcALTV2lem1 45594 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
25 | 23, 24 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘𝑋) = (Base‘𝑋)) |
26 | 22, 25 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑌) ↑m (𝐹‘𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋))) |
27 | 26 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → ((𝐹‘𝑌) ↑m (𝐹‘𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋))) |
28 | 13, 27 | eleqtrrd 2842 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((𝐹‘𝑌) ↑m (𝐹‘𝑋))) |
29 | 28 | ex 413 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) → 𝑓 ∈ ((𝐹‘𝑌) ↑m (𝐹‘𝑋)))) |
30 | 6, 29 | syl5 34 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑓 ∈ (𝑋 RingHom 𝑌) → 𝑓 ∈ ((𝐹‘𝑌) ↑m (𝐹‘𝑋)))) |
31 | 30 | ssrdv 3927 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 RingHom 𝑌) ⊆ ((𝐹‘𝑌) ↑m (𝐹‘𝑋))) |
32 | 3, 31 | fssd 6618 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶((𝐹‘𝑌) ↑m (𝐹‘𝑋))) |
33 | | funcringcsetcALTV2.g |
. . . 4
⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
34 | 15, 16, 17, 18, 19, 20, 33 | funcringcsetcALTV2lem5 45598 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌))) |
35 | 19 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑈 ∈ WUni) |
36 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝑅) = (Hom
‘𝑅) |
37 | 23 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
38 | 14 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
39 | 15, 17, 35, 36, 37, 38 | ringchom 45571 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(Hom ‘𝑅)𝑌) = (𝑋 RingHom 𝑌)) |
40 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝑆) = (Hom
‘𝑆) |
41 | 15, 16, 17, 18, 19, 20 | funcringcsetcALTV2lem2 45595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) |
42 | 23, 41 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘𝑋) ∈ 𝑈) |
43 | 15, 16, 17, 18, 19, 20 | funcringcsetcALTV2lem2 45595 |
. . . . 5
⊢ ((𝜑 ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ 𝑈) |
44 | 14, 43 | sylan2 593 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘𝑌) ∈ 𝑈) |
45 | 16, 35, 40, 42, 44 | setchom 17795 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋)(Hom ‘𝑆)(𝐹‘𝑌)) = ((𝐹‘𝑌) ↑m (𝐹‘𝑋))) |
46 | 34, 39, 45 | feq123d 6589 |
. 2
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝑆)(𝐹‘𝑌)) ↔ ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶((𝐹‘𝑌) ↑m (𝐹‘𝑋)))) |
47 | 32, 46 | mpbird 256 |
1
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝑆)(𝐹‘𝑌))) |