Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetcALTV2lem8 Structured version   Visualization version   GIF version

Theorem funcringcsetcALTV2lem8 46331
Description: Lemma 8 for funcringcsetcALTV2 46333. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV2.r 𝑅 = (RingCat‘𝑈)
funcringcsetcALTV2.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV2.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV2.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV2.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV2.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV2.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetcALTV2lem8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcringcsetcALTV2lem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6822 . . . 4 ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)–1-1-onto→(𝑋 RingHom 𝑌)
2 f1of 6784 . . . 4 (( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)–1-1-onto→(𝑋 RingHom 𝑌) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶(𝑋 RingHom 𝑌))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶(𝑋 RingHom 𝑌))
4 eqid 2736 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
5 eqid 2736 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
64, 5rhmf 20158 . . . . 5 (𝑓 ∈ (𝑋 RingHom 𝑌) → 𝑓:(Base‘𝑋)⟶(Base‘𝑌))
7 fvex 6855 . . . . . . . . . 10 (Base‘𝑌) ∈ V
8 fvex 6855 . . . . . . . . . 10 (Base‘𝑋) ∈ V
97, 8pm3.2i 471 . . . . . . . . 9 ((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V)
10 elmapg 8778 . . . . . . . . . 10 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)))
1110bicomd 222 . . . . . . . . 9 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
129, 11mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
1312biimpa 477 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
14 simpr 485 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
15 funcringcsetcALTV2.r . . . . . . . . . . 11 𝑅 = (RingCat‘𝑈)
16 funcringcsetcALTV2.s . . . . . . . . . . 11 𝑆 = (SetCat‘𝑈)
17 funcringcsetcALTV2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
18 funcringcsetcALTV2.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
19 funcringcsetcALTV2.u . . . . . . . . . . 11 (𝜑𝑈 ∈ WUni)
20 funcringcsetcALTV2.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
2115, 16, 17, 18, 19, 20funcringcsetcALTV2lem1 46324 . . . . . . . . . 10 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
2214, 21sylan2 593 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) = (Base‘𝑌))
23 simpl 483 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2415, 16, 17, 18, 19, 20funcringcsetcALTV2lem1 46324 . . . . . . . . . 10 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
2523, 24sylan2 593 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) = (Base‘𝑋))
2622, 25oveq12d 7375 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2726adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2813, 27eleqtrrd 2841 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋)))
2928ex 413 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
306, 29syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓 ∈ (𝑋 RingHom 𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
3130ssrdv 3950 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 RingHom 𝑌) ⊆ ((𝐹𝑌) ↑m (𝐹𝑋)))
323, 31fssd 6686 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶((𝐹𝑌) ↑m (𝐹𝑋)))
33 funcringcsetcALTV2.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
3415, 16, 17, 18, 19, 20, 33funcringcsetcALTV2lem5 46328 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌)))
3519adantr 481 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑈 ∈ WUni)
36 eqid 2736 . . . 4 (Hom ‘𝑅) = (Hom ‘𝑅)
3723adantl 482 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3814adantl 482 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
3915, 17, 35, 36, 37, 38ringchom 46301 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(Hom ‘𝑅)𝑌) = (𝑋 RingHom 𝑌))
40 eqid 2736 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4115, 16, 17, 18, 19, 20funcringcsetcALTV2lem2 46325 . . . . 5 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
4223, 41sylan2 593 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝑈)
4315, 16, 17, 18, 19, 20funcringcsetcALTV2lem2 46325 . . . . 5 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
4414, 43sylan2 593 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝑈)
4516, 35, 40, 42, 44setchom 17966 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) = ((𝐹𝑌) ↑m (𝐹𝑋)))
4634, 39, 45feq123d 6657 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) ↔ ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶((𝐹𝑌) ↑m (𝐹𝑋))))
4732, 46mpbird 256 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cmpt 5188   I cid 5530  cres 5635  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  WUnicwun 10636  Basecbs 17083  Hom chom 17144  SetCatcsetc 17961   RingHom crh 20143  RingCatcringc 46291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-wun 10638  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-hom 17157  df-cco 17158  df-0g 17323  df-resc 17694  df-setc 17962  df-estrc 18010  df-mhm 18601  df-ghm 19006  df-mgp 19897  df-ur 19914  df-ring 19966  df-rnghom 20146  df-ringc 46293
This theorem is referenced by:  funcringcsetcALTV2  46333
  Copyright terms: Public domain W3C validator