Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetcALTV2lem8 Structured version   Visualization version   GIF version

Theorem funcringcsetcALTV2lem8 48020
Description: Lemma 8 for funcringcsetcALTV2 48022. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV2.r 𝑅 = (RingCat‘𝑈)
funcringcsetcALTV2.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV2.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV2.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV2.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV2.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV2.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetcALTV2lem8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcringcsetcALTV2lem8
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6900 . . . 4 ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)–1-1-onto→(𝑋 RingHom 𝑌)
2 f1of 6862 . . . 4 (( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)–1-1-onto→(𝑋 RingHom 𝑌) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶(𝑋 RingHom 𝑌))
31, 2mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶(𝑋 RingHom 𝑌))
4 eqid 2740 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
5 eqid 2740 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
64, 5rhmf 20511 . . . . 5 (𝑓 ∈ (𝑋 RingHom 𝑌) → 𝑓:(Base‘𝑋)⟶(Base‘𝑌))
7 fvex 6933 . . . . . . . . . 10 (Base‘𝑌) ∈ V
8 fvex 6933 . . . . . . . . . 10 (Base‘𝑋) ∈ V
97, 8pm3.2i 470 . . . . . . . . 9 ((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V)
10 elmapg 8897 . . . . . . . . . 10 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ↔ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)))
1110bicomd 223 . . . . . . . . 9 (((Base‘𝑌) ∈ V ∧ (Base‘𝑋) ∈ V) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
129, 11mp1i 13 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) ↔ 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
1312biimpa 476 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
14 simpr 484 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → 𝑌𝐵)
15 funcringcsetcALTV2.r . . . . . . . . . . 11 𝑅 = (RingCat‘𝑈)
16 funcringcsetcALTV2.s . . . . . . . . . . 11 𝑆 = (SetCat‘𝑈)
17 funcringcsetcALTV2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
18 funcringcsetcALTV2.c . . . . . . . . . . 11 𝐶 = (Base‘𝑆)
19 funcringcsetcALTV2.u . . . . . . . . . . 11 (𝜑𝑈 ∈ WUni)
20 funcringcsetcALTV2.f . . . . . . . . . . 11 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
2115, 16, 17, 18, 19, 20funcringcsetcALTV2lem1 48013 . . . . . . . . . 10 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
2214, 21sylan2 592 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) = (Base‘𝑌))
23 simpl 482 . . . . . . . . . 10 ((𝑋𝐵𝑌𝐵) → 𝑋𝐵)
2415, 16, 17, 18, 19, 20funcringcsetcALTV2lem1 48013 . . . . . . . . . 10 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
2523, 24sylan2 592 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) = (Base‘𝑋))
2622, 25oveq12d 7466 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2726adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → ((𝐹𝑌) ↑m (𝐹𝑋)) = ((Base‘𝑌) ↑m (Base‘𝑋)))
2813, 27eleqtrrd 2847 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑓:(Base‘𝑋)⟶(Base‘𝑌)) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋)))
2928ex 412 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓:(Base‘𝑋)⟶(Base‘𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
306, 29syl5 34 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑓 ∈ (𝑋 RingHom 𝑌) → 𝑓 ∈ ((𝐹𝑌) ↑m (𝐹𝑋))))
3130ssrdv 4014 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 RingHom 𝑌) ⊆ ((𝐹𝑌) ↑m (𝐹𝑋)))
323, 31fssd 6764 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶((𝐹𝑌) ↑m (𝐹𝑋)))
33 funcringcsetcALTV2.g . . . 4 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
3415, 16, 17, 18, 19, 20, 33funcringcsetcALTV2lem5 48017 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑋 RingHom 𝑌)))
3519adantr 480 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑈 ∈ WUni)
36 eqid 2740 . . . 4 (Hom ‘𝑅) = (Hom ‘𝑅)
3723adantl 481 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3814adantl 481 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
3915, 17, 35, 36, 37, 38ringchom 20674 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(Hom ‘𝑅)𝑌) = (𝑋 RingHom 𝑌))
40 eqid 2740 . . . 4 (Hom ‘𝑆) = (Hom ‘𝑆)
4115, 16, 17, 18, 19, 20funcringcsetcALTV2lem2 48014 . . . . 5 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
4223, 41sylan2 592 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝑈)
4315, 16, 17, 18, 19, 20funcringcsetcALTV2lem2 48014 . . . . 5 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
4414, 43sylan2 592 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝑈)
4516, 35, 40, 42, 44setchom 18147 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) = ((𝐹𝑌) ↑m (𝐹𝑋)))
4634, 39, 45feq123d 6736 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)) ↔ ( I ↾ (𝑋 RingHom 𝑌)):(𝑋 RingHom 𝑌)⟶((𝐹𝑌) ↑m (𝐹𝑋))))
4732, 46mpbird 257 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑅)𝑌)⟶((𝐹𝑋)(Hom ‘𝑆)(𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249   I cid 5592  cres 5702  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  m cmap 8884  WUnicwun 10769  Basecbs 17258  Hom chom 17322  SetCatcsetc 18142   RingHom crh 20495  RingCatcringc 20667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-wun 10771  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-hom 17335  df-cco 17336  df-0g 17501  df-resc 17872  df-setc 18143  df-estrc 18191  df-mhm 18818  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-rhm 20498  df-ringc 20668
This theorem is referenced by:  funcringcsetcALTV2  48022
  Copyright terms: Public domain W3C validator