Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetcALTV2 Structured version   Visualization version   GIF version

Theorem funcringcsetcALTV2 48060
Description: The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV2.r 𝑅 = (RingCat‘𝑈)
funcringcsetcALTV2.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV2.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV2.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV2.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV2.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV2.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetcALTV2 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcringcsetcALTV2
Dummy variables 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcringcsetcALTV2.b . 2 𝐵 = (Base‘𝑅)
2 funcringcsetcALTV2.c . 2 𝐶 = (Base‘𝑆)
3 eqid 2733 . 2 (Hom ‘𝑅) = (Hom ‘𝑅)
4 eqid 2733 . 2 (Hom ‘𝑆) = (Hom ‘𝑆)
5 eqid 2733 . 2 (Id‘𝑅) = (Id‘𝑅)
6 eqid 2733 . 2 (Id‘𝑆) = (Id‘𝑆)
7 eqid 2733 . 2 (comp‘𝑅) = (comp‘𝑅)
8 eqid 2733 . 2 (comp‘𝑆) = (comp‘𝑆)
9 funcringcsetcALTV2.u . . 3 (𝜑𝑈 ∈ WUni)
10 funcringcsetcALTV2.r . . . 4 𝑅 = (RingCat‘𝑈)
1110ringccat 20661 . . 3 (𝑈 ∈ WUni → 𝑅 ∈ Cat)
129, 11syl 17 . 2 (𝜑𝑅 ∈ Cat)
13 funcringcsetcALTV2.s . . . 4 𝑆 = (SetCat‘𝑈)
1413setccat 18128 . . 3 (𝑈 ∈ WUni → 𝑆 ∈ Cat)
159, 14syl 17 . 2 (𝜑𝑆 ∈ Cat)
16 funcringcsetcALTV2.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
1710, 13, 1, 2, 9, 16funcringcsetcALTV2lem3 48053 . 2 (𝜑𝐹:𝐵𝐶)
18 funcringcsetcALTV2.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
1910, 13, 1, 2, 9, 16, 18funcringcsetcALTV2lem4 48054 . 2 (𝜑𝐺 Fn (𝐵 × 𝐵))
2010, 13, 1, 2, 9, 16, 18funcringcsetcALTV2lem8 48058 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑅)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
2110, 13, 1, 2, 9, 16, 18funcringcsetcALTV2lem7 48057 . 2 ((𝜑𝑎𝐵) → ((𝑎𝐺𝑎)‘((Id‘𝑅)‘𝑎)) = ((Id‘𝑆)‘(𝐹𝑎)))
2210, 13, 1, 2, 9, 16, 18funcringcsetcALTV2lem9 48059 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵) ∧ ( ∈ (𝑎(Hom ‘𝑅)𝑏) ∧ 𝑘 ∈ (𝑏(Hom ‘𝑅)𝑐))) → ((𝑎𝐺𝑐)‘(𝑘(⟨𝑎, 𝑏⟩(comp‘𝑅)𝑐))) = (((𝑏𝐺𝑐)‘𝑘)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝑆)(𝐹𝑐))((𝑎𝐺𝑏)‘)))
231, 2, 3, 4, 5, 6, 7, 8, 12, 15, 17, 19, 20, 21, 22isfuncd 17905 1 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1535  wcel 2104   class class class wbr 5149  cmpt 5232   I cid 5575  cres 5685  cfv 6558  (class class class)co 7425  cmpo 7427  WUnicwun 10731  Basecbs 17234  Hom chom 17298  compcco 17299  Catccat 17698  Idccid 17699   Func cfunc 17894  SetCatcsetc 18118   RingHom crh 20471  RingCatcringc 20643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6317  df-ord 6383  df-on 6384  df-lim 6385  df-suc 6386  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7381  df-ov 7428  df-oprab 7429  df-mpo 7430  df-om 7881  df-1st 8007  df-2nd 8008  df-frecs 8299  df-wrecs 8330  df-recs 8404  df-rdg 8443  df-1o 8499  df-er 8738  df-map 8861  df-pm 8862  df-ixp 8931  df-en 8979  df-dom 8980  df-sdom 8981  df-fin 8982  df-wun 10733  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11485  df-neg 11486  df-nn 12258  df-2 12320  df-3 12321  df-4 12322  df-5 12323  df-6 12324  df-7 12325  df-8 12326  df-9 12327  df-n0 12518  df-z 12605  df-dec 12725  df-uz 12870  df-fz 13538  df-struct 17170  df-sets 17187  df-slot 17205  df-ndx 17217  df-base 17235  df-ress 17264  df-plusg 17300  df-hom 17311  df-cco 17312  df-0g 17477  df-cat 17702  df-cid 17703  df-homf 17704  df-ssc 17847  df-resc 17848  df-subc 17849  df-func 17898  df-setc 18119  df-estrc 18167  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18794  df-grp 18952  df-ghm 19229  df-mgp 20138  df-ur 20185  df-ring 20238  df-rhm 20474  df-ringc 20644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator