![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2 | Structured version Visualization version GIF version |
Description: The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV2.r | β’ π = (RingCatβπ) |
funcringcsetcALTV2.s | β’ π = (SetCatβπ) |
funcringcsetcALTV2.b | β’ π΅ = (Baseβπ ) |
funcringcsetcALTV2.c | β’ πΆ = (Baseβπ) |
funcringcsetcALTV2.u | β’ (π β π β WUni) |
funcringcsetcALTV2.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
funcringcsetcALTV2.g | β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) |
Ref | Expression |
---|---|
funcringcsetcALTV2 | β’ (π β πΉ(π Func π)πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV2.b | . 2 β’ π΅ = (Baseβπ ) | |
2 | funcringcsetcALTV2.c | . 2 β’ πΆ = (Baseβπ) | |
3 | eqid 2725 | . 2 β’ (Hom βπ ) = (Hom βπ ) | |
4 | eqid 2725 | . 2 β’ (Hom βπ) = (Hom βπ) | |
5 | eqid 2725 | . 2 β’ (Idβπ ) = (Idβπ ) | |
6 | eqid 2725 | . 2 β’ (Idβπ) = (Idβπ) | |
7 | eqid 2725 | . 2 β’ (compβπ ) = (compβπ ) | |
8 | eqid 2725 | . 2 β’ (compβπ) = (compβπ) | |
9 | funcringcsetcALTV2.u | . . 3 β’ (π β π β WUni) | |
10 | funcringcsetcALTV2.r | . . . 4 β’ π = (RingCatβπ) | |
11 | 10 | ringccat 20600 | . . 3 β’ (π β WUni β π β Cat) |
12 | 9, 11 | syl 17 | . 2 β’ (π β π β Cat) |
13 | funcringcsetcALTV2.s | . . . 4 β’ π = (SetCatβπ) | |
14 | 13 | setccat 18073 | . . 3 β’ (π β WUni β π β Cat) |
15 | 9, 14 | syl 17 | . 2 β’ (π β π β Cat) |
16 | funcringcsetcALTV2.f | . . 3 β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) | |
17 | 10, 13, 1, 2, 9, 16 | funcringcsetcALTV2lem3 47466 | . 2 β’ (π β πΉ:π΅βΆπΆ) |
18 | funcringcsetcALTV2.g | . . 3 β’ (π β πΊ = (π₯ β π΅, π¦ β π΅ β¦ ( I βΎ (π₯ RingHom π¦)))) | |
19 | 10, 13, 1, 2, 9, 16, 18 | funcringcsetcALTV2lem4 47467 | . 2 β’ (π β πΊ Fn (π΅ Γ π΅)) |
20 | 10, 13, 1, 2, 9, 16, 18 | funcringcsetcALTV2lem8 47471 | . 2 β’ ((π β§ (π β π΅ β§ π β π΅)) β (ππΊπ):(π(Hom βπ )π)βΆ((πΉβπ)(Hom βπ)(πΉβπ))) |
21 | 10, 13, 1, 2, 9, 16, 18 | funcringcsetcALTV2lem7 47470 | . 2 β’ ((π β§ π β π΅) β ((ππΊπ)β((Idβπ )βπ)) = ((Idβπ)β(πΉβπ))) |
22 | 10, 13, 1, 2, 9, 16, 18 | funcringcsetcALTV2lem9 47472 | . 2 β’ ((π β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (β β (π(Hom βπ )π) β§ π β (π(Hom βπ )π))) β ((ππΊπ)β(π(β¨π, πβ©(compβπ )π)β)) = (((ππΊπ)βπ)(β¨(πΉβπ), (πΉβπ)β©(compβπ)(πΉβπ))((ππΊπ)ββ))) |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 15, 17, 19, 20, 21, 22 | isfuncd 17850 | 1 β’ (π β πΉ(π Func π)πΊ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 class class class wbr 5148 β¦ cmpt 5231 I cid 5574 βΎ cres 5679 βcfv 6547 (class class class)co 7417 β cmpo 7419 WUnicwun 10723 Basecbs 17179 Hom chom 17243 compcco 17244 Catccat 17643 Idccid 17644 Func cfunc 17839 SetCatcsetc 18063 RingHom crh 20412 RingCatcringc 20582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-pm 8846 df-ixp 8915 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-wun 10725 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-hom 17256 df-cco 17257 df-0g 17422 df-cat 17647 df-cid 17648 df-homf 17649 df-ssc 17792 df-resc 17793 df-subc 17794 df-func 17843 df-setc 18064 df-estrc 18112 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-grp 18897 df-ghm 19172 df-mgp 20079 df-ur 20126 df-ring 20179 df-rhm 20415 df-ringc 20583 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |