Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetcALTV2 Structured version   Visualization version   GIF version

Theorem funcringcsetcALTV2 45085
Description: The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV2.r 𝑅 = (RingCat‘𝑈)
funcringcsetcALTV2.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV2.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV2.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV2.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV2.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcringcsetcALTV2.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetcALTV2 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem funcringcsetcALTV2
Dummy variables 𝑎 𝑏 𝑐 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcringcsetcALTV2.b . 2 𝐵 = (Base‘𝑅)
2 funcringcsetcALTV2.c . 2 𝐶 = (Base‘𝑆)
3 eqid 2758 . 2 (Hom ‘𝑅) = (Hom ‘𝑅)
4 eqid 2758 . 2 (Hom ‘𝑆) = (Hom ‘𝑆)
5 eqid 2758 . 2 (Id‘𝑅) = (Id‘𝑅)
6 eqid 2758 . 2 (Id‘𝑆) = (Id‘𝑆)
7 eqid 2758 . 2 (comp‘𝑅) = (comp‘𝑅)
8 eqid 2758 . 2 (comp‘𝑆) = (comp‘𝑆)
9 funcringcsetcALTV2.u . . 3 (𝜑𝑈 ∈ WUni)
10 funcringcsetcALTV2.r . . . 4 𝑅 = (RingCat‘𝑈)
1110ringccat 45064 . . 3 (𝑈 ∈ WUni → 𝑅 ∈ Cat)
129, 11syl 17 . 2 (𝜑𝑅 ∈ Cat)
13 funcringcsetcALTV2.s . . . 4 𝑆 = (SetCat‘𝑈)
1413setccat 17424 . . 3 (𝑈 ∈ WUni → 𝑆 ∈ Cat)
159, 14syl 17 . 2 (𝜑𝑆 ∈ Cat)
16 funcringcsetcALTV2.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
1710, 13, 1, 2, 9, 16funcringcsetcALTV2lem3 45078 . 2 (𝜑𝐹:𝐵𝐶)
18 funcringcsetcALTV2.g . . 3 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))))
1910, 13, 1, 2, 9, 16, 18funcringcsetcALTV2lem4 45079 . 2 (𝜑𝐺 Fn (𝐵 × 𝐵))
2010, 13, 1, 2, 9, 16, 18funcringcsetcALTV2lem8 45083 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑅)𝑏)⟶((𝐹𝑎)(Hom ‘𝑆)(𝐹𝑏)))
2110, 13, 1, 2, 9, 16, 18funcringcsetcALTV2lem7 45082 . 2 ((𝜑𝑎𝐵) → ((𝑎𝐺𝑎)‘((Id‘𝑅)‘𝑎)) = ((Id‘𝑆)‘(𝐹𝑎)))
2210, 13, 1, 2, 9, 16, 18funcringcsetcALTV2lem9 45084 . 2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵𝑐𝐵) ∧ ( ∈ (𝑎(Hom ‘𝑅)𝑏) ∧ 𝑘 ∈ (𝑏(Hom ‘𝑅)𝑐))) → ((𝑎𝐺𝑐)‘(𝑘(⟨𝑎, 𝑏⟩(comp‘𝑅)𝑐))) = (((𝑏𝐺𝑐)‘𝑘)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝑆)(𝐹𝑐))((𝑎𝐺𝑏)‘)))
231, 2, 3, 4, 5, 6, 7, 8, 12, 15, 17, 19, 20, 21, 22isfuncd 17207 1 (𝜑𝐹(𝑅 Func 𝑆)𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111   class class class wbr 5036  cmpt 5116   I cid 5433  cres 5530  cfv 6340  (class class class)co 7156  cmpo 7158  WUnicwun 10173  Basecbs 16554  Hom chom 16647  compcco 16648  Catccat 17006  Idccid 17007   Func cfunc 17196  SetCatcsetc 17414   RingHom crh 19548  RingCatcringc 45043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-pm 8425  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-wun 10175  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-hom 16660  df-cco 16661  df-0g 16786  df-cat 17010  df-cid 17011  df-homf 17012  df-ssc 17152  df-resc 17153  df-subc 17154  df-func 17200  df-setc 17415  df-estrc 17452  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-mhm 18035  df-grp 18185  df-ghm 18436  df-mgp 19321  df-ur 19333  df-ring 19380  df-rnghom 19551  df-ringc 45045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator