![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2 | Structured version Visualization version GIF version |
Description: The "natural forgetful functor" from the category of unital rings into the category of sets which sends each ring to its underlying set (base set) and the morphisms (ring homomorphisms) to mappings of the corresponding base sets. (Contributed by AV, 16-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcringcsetcALTV2.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
Ref | Expression |
---|---|
funcringcsetcALTV2 | ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV2.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | funcringcsetcALTV2.c | . 2 ⊢ 𝐶 = (Base‘𝑆) | |
3 | eqid 2740 | . 2 ⊢ (Hom ‘𝑅) = (Hom ‘𝑅) | |
4 | eqid 2740 | . 2 ⊢ (Hom ‘𝑆) = (Hom ‘𝑆) | |
5 | eqid 2740 | . 2 ⊢ (Id‘𝑅) = (Id‘𝑅) | |
6 | eqid 2740 | . 2 ⊢ (Id‘𝑆) = (Id‘𝑆) | |
7 | eqid 2740 | . 2 ⊢ (comp‘𝑅) = (comp‘𝑅) | |
8 | eqid 2740 | . 2 ⊢ (comp‘𝑆) = (comp‘𝑆) | |
9 | funcringcsetcALTV2.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ WUni) | |
10 | funcringcsetcALTV2.r | . . . 4 ⊢ 𝑅 = (RingCat‘𝑈) | |
11 | 10 | ringccat 20679 | . . 3 ⊢ (𝑈 ∈ WUni → 𝑅 ∈ Cat) |
12 | 9, 11 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Cat) |
13 | funcringcsetcALTV2.s | . . . 4 ⊢ 𝑆 = (SetCat‘𝑈) | |
14 | 13 | setccat 18146 | . . 3 ⊢ (𝑈 ∈ WUni → 𝑆 ∈ Cat) |
15 | 9, 14 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ∈ Cat) |
16 | funcringcsetcALTV2.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
17 | 10, 13, 1, 2, 9, 16 | funcringcsetcALTV2lem3 48004 | . 2 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
18 | funcringcsetcALTV2.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
19 | 10, 13, 1, 2, 9, 16, 18 | funcringcsetcALTV2lem4 48005 | . 2 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
20 | 10, 13, 1, 2, 9, 16, 18 | funcringcsetcALTV2lem8 48009 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎𝐺𝑏):(𝑎(Hom ‘𝑅)𝑏)⟶((𝐹‘𝑎)(Hom ‘𝑆)(𝐹‘𝑏))) |
21 | 10, 13, 1, 2, 9, 16, 18 | funcringcsetcALTV2lem7 48008 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝑎𝐺𝑎)‘((Id‘𝑅)‘𝑎)) = ((Id‘𝑆)‘(𝐹‘𝑎))) |
22 | 10, 13, 1, 2, 9, 16, 18 | funcringcsetcALTV2lem9 48010 | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵) ∧ (ℎ ∈ (𝑎(Hom ‘𝑅)𝑏) ∧ 𝑘 ∈ (𝑏(Hom ‘𝑅)𝑐))) → ((𝑎𝐺𝑐)‘(𝑘(〈𝑎, 𝑏〉(comp‘𝑅)𝑐)ℎ)) = (((𝑏𝐺𝑐)‘𝑘)(〈(𝐹‘𝑎), (𝐹‘𝑏)〉(comp‘𝑆)(𝐹‘𝑐))((𝑎𝐺𝑏)‘ℎ))) |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 12, 15, 17, 19, 20, 21, 22 | isfuncd 17923 | 1 ⊢ (𝜑 → 𝐹(𝑅 Func 𝑆)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ↦ cmpt 5249 I cid 5592 ↾ cres 5697 ‘cfv 6568 (class class class)co 7443 ∈ cmpo 7445 WUnicwun 10763 Basecbs 17252 Hom chom 17316 compcco 17317 Catccat 17716 Idccid 17717 Func cfunc 17912 SetCatcsetc 18136 RingHom crh 20489 RingCatcringc 20661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-er 8757 df-map 8880 df-pm 8881 df-ixp 8950 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-wun 10765 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-8 12356 df-9 12357 df-n0 12548 df-z 12634 df-dec 12753 df-uz 12898 df-fz 13562 df-struct 17188 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-ress 17282 df-plusg 17318 df-hom 17329 df-cco 17330 df-0g 17495 df-cat 17720 df-cid 17721 df-homf 17722 df-ssc 17865 df-resc 17866 df-subc 17867 df-func 17916 df-setc 18137 df-estrc 18185 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-mhm 18812 df-grp 18970 df-ghm 19247 df-mgp 20156 df-ur 20203 df-ring 20256 df-rhm 20492 df-ringc 20662 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |