![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem1ALTV | Structured version Visualization version GIF version |
Description: Lemma 1 for funcringcsetcALTV 47496. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV.r | β’ π = (RingCatALTVβπ) |
funcringcsetcALTV.s | β’ π = (SetCatβπ) |
funcringcsetcALTV.b | β’ π΅ = (Baseβπ ) |
funcringcsetcALTV.c | β’ πΆ = (Baseβπ) |
funcringcsetcALTV.u | β’ (π β π β WUni) |
funcringcsetcALTV.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
Ref | Expression |
---|---|
funcringcsetclem1ALTV | β’ ((π β§ π β π΅) β (πΉβπ) = (Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV.f | . . 3 β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) | |
2 | 1 | adantr 479 | . 2 β’ ((π β§ π β π΅) β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
3 | fveq2 6894 | . . 3 β’ (π₯ = π β (Baseβπ₯) = (Baseβπ)) | |
4 | 3 | adantl 480 | . 2 β’ (((π β§ π β π΅) β§ π₯ = π) β (Baseβπ₯) = (Baseβπ)) |
5 | simpr 483 | . 2 β’ ((π β§ π β π΅) β π β π΅) | |
6 | fvexd 6909 | . 2 β’ ((π β§ π β π΅) β (Baseβπ) β V) | |
7 | 2, 4, 5, 6 | fvmptd 7009 | 1 β’ ((π β§ π β π΅) β (πΉβπ) = (Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3463 β¦ cmpt 5231 βcfv 6547 WUnicwun 10723 Basecbs 17179 SetCatcsetc 18063 RingCatALTVcringcALTV 47461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6499 df-fun 6549 df-fv 6555 |
This theorem is referenced by: funcringcsetclem2ALTV 47488 funcringcsetclem7ALTV 47493 funcringcsetclem8ALTV 47494 funcringcsetclem9ALTV 47495 |
Copyright terms: Public domain | W3C validator |