Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetclem1ALTV Structured version   Visualization version   GIF version

Theorem funcringcsetclem1ALTV 45135
Description: Lemma 1 for funcringcsetcALTV 45144. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV.r 𝑅 = (RingCatALTV‘𝑈)
funcringcsetcALTV.s 𝑆 = (SetCat‘𝑈)
funcringcsetcALTV.b 𝐵 = (Base‘𝑅)
funcringcsetcALTV.c 𝐶 = (Base‘𝑆)
funcringcsetcALTV.u (𝜑𝑈 ∈ WUni)
funcringcsetcALTV.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
Assertion
Ref Expression
funcringcsetclem1ALTV ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑈(𝑥)   𝐹(𝑥)

Proof of Theorem funcringcsetclem1ALTV
StepHypRef Expression
1 funcringcsetcALTV.f . . 3 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
21adantr 484 . 2 ((𝜑𝑋𝐵) → 𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
3 fveq2 6668 . . 3 (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋))
43adantl 485 . 2 (((𝜑𝑋𝐵) ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋))
5 simpr 488 . 2 ((𝜑𝑋𝐵) → 𝑋𝐵)
6 fvexd 6683 . 2 ((𝜑𝑋𝐵) → (Base‘𝑋) ∈ V)
72, 4, 5, 6fvmptd 6776 1 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2113  Vcvv 3397  cmpt 5107  cfv 6333  WUnicwun 10193  Basecbs 16579  SetCatcsetc 17440  RingCatALTVcringcALTV 45080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6291  df-fun 6335  df-fv 6341
This theorem is referenced by:  funcringcsetclem2ALTV  45136  funcringcsetclem7ALTV  45141  funcringcsetclem8ALTV  45142  funcringcsetclem9ALTV  45143
  Copyright terms: Public domain W3C validator