| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem1ALTV | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for funcringcsetcALTV 48238. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| funcringcsetcALTV.r | ⊢ 𝑅 = (RingCatALTV‘𝑈) |
| funcringcsetcALTV.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcringcsetcALTV.b | ⊢ 𝐵 = (Base‘𝑅) |
| funcringcsetcALTV.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcringcsetcALTV.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcringcsetcALTV.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| Ref | Expression |
|---|---|
| funcringcsetclem1ALTV | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcringcsetcALTV.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| 3 | fveq2 6906 | . . 3 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋)) |
| 5 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | fvexd 6921 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ V) | |
| 7 | 2, 4, 5, 6 | fvmptd 7023 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ↦ cmpt 5225 ‘cfv 6561 WUnicwun 10740 Basecbs 17247 SetCatcsetc 18120 RingCatALTVcringcALTV 48203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 |
| This theorem is referenced by: funcringcsetclem2ALTV 48230 funcringcsetclem7ALTV 48235 funcringcsetclem8ALTV 48236 funcringcsetclem9ALTV 48237 |
| Copyright terms: Public domain | W3C validator |