![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem1ALTV | Structured version Visualization version GIF version |
Description: Lemma 1 for funcringcsetcALTV 46956. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV.r | β’ π = (RingCatALTVβπ) |
funcringcsetcALTV.s | β’ π = (SetCatβπ) |
funcringcsetcALTV.b | β’ π΅ = (Baseβπ ) |
funcringcsetcALTV.c | β’ πΆ = (Baseβπ) |
funcringcsetcALTV.u | β’ (π β π β WUni) |
funcringcsetcALTV.f | β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
Ref | Expression |
---|---|
funcringcsetclem1ALTV | β’ ((π β§ π β π΅) β (πΉβπ) = (Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV.f | . . 3 β’ (π β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) | |
2 | 1 | adantr 481 | . 2 β’ ((π β§ π β π΅) β πΉ = (π₯ β π΅ β¦ (Baseβπ₯))) |
3 | fveq2 6891 | . . 3 β’ (π₯ = π β (Baseβπ₯) = (Baseβπ)) | |
4 | 3 | adantl 482 | . 2 β’ (((π β§ π β π΅) β§ π₯ = π) β (Baseβπ₯) = (Baseβπ)) |
5 | simpr 485 | . 2 β’ ((π β§ π β π΅) β π β π΅) | |
6 | fvexd 6906 | . 2 β’ ((π β§ π β π΅) β (Baseβπ) β V) | |
7 | 2, 4, 5, 6 | fvmptd 7005 | 1 β’ ((π β§ π β π΅) β (πΉβπ) = (Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β¦ cmpt 5231 βcfv 6543 WUnicwun 10694 Basecbs 17143 SetCatcsetc 18024 RingCatALTVcringcALTV 46892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 |
This theorem is referenced by: funcringcsetclem2ALTV 46948 funcringcsetclem7ALTV 46953 funcringcsetclem8ALTV 46954 funcringcsetclem9ALTV 46955 |
Copyright terms: Public domain | W3C validator |