Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem1ALTV | Structured version Visualization version GIF version |
Description: Lemma 1 for funcringcsetcALTV 45626. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV.r | ⊢ 𝑅 = (RingCatALTV‘𝑈) |
funcringcsetcALTV.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
Ref | Expression |
---|---|
funcringcsetclem1ALTV | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcringcsetcALTV.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
3 | fveq2 6774 | . . 3 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
4 | 3 | adantl 482 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋)) |
5 | simpr 485 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
6 | fvexd 6789 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ V) | |
7 | 2, 4, 5, 6 | fvmptd 6882 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ↦ cmpt 5157 ‘cfv 6433 WUnicwun 10456 Basecbs 16912 SetCatcsetc 17790 RingCatALTVcringcALTV 45562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: funcringcsetclem2ALTV 45618 funcringcsetclem7ALTV 45623 funcringcsetclem8ALTV 45624 funcringcsetclem9ALTV 45625 |
Copyright terms: Public domain | W3C validator |