| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetclem1ALTV | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for funcringcsetcALTV 48314. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| funcringcsetcALTV.r | ⊢ 𝑅 = (RingCatALTV‘𝑈) |
| funcringcsetcALTV.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| funcringcsetcALTV.b | ⊢ 𝐵 = (Base‘𝑅) |
| funcringcsetcALTV.c | ⊢ 𝐶 = (Base‘𝑆) |
| funcringcsetcALTV.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
| funcringcsetcALTV.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| Ref | Expression |
|---|---|
| funcringcsetclem1ALTV | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcringcsetcALTV.f | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
| 3 | fveq2 6861 | . . 3 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
| 4 | 3 | adantl 481 | . 2 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋)) |
| 5 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 6 | fvexd 6876 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (Base‘𝑋) ∈ V) | |
| 7 | 2, 4, 5, 6 | fvmptd 6978 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 WUnicwun 10660 Basecbs 17186 SetCatcsetc 18044 RingCatALTVcringcALTV 48279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: funcringcsetclem2ALTV 48306 funcringcsetclem7ALTV 48311 funcringcsetclem8ALTV 48312 funcringcsetclem9ALTV 48313 |
| Copyright terms: Public domain | W3C validator |