Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcringcsetclem8ALTV Structured version   Visualization version   GIF version

Theorem funcringcsetclem8ALTV 47305
Description: Lemma 8 for funcringcsetcALTV 47307. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
funcringcsetcALTV.r 𝑅 = (RingCatALTVβ€˜π‘ˆ)
funcringcsetcALTV.s 𝑆 = (SetCatβ€˜π‘ˆ)
funcringcsetcALTV.b 𝐡 = (Baseβ€˜π‘…)
funcringcsetcALTV.c 𝐢 = (Baseβ€˜π‘†)
funcringcsetcALTV.u (πœ‘ β†’ π‘ˆ ∈ WUni)
funcringcsetcALTV.f (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
funcringcsetcALTV.g (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RingHom 𝑦))))
Assertion
Ref Expression
funcringcsetclem8ALTV ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (π‘‹πΊπ‘Œ):(𝑋(Hom β€˜π‘…)π‘Œ)⟢((πΉβ€˜π‘‹)(Hom β€˜π‘†)(πΉβ€˜π‘Œ)))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑋   πœ‘,π‘₯   π‘₯,𝐢   𝑦,𝐡,π‘₯   𝑦,𝑋   π‘₯,π‘Œ,𝑦   πœ‘,𝑦
Allowed substitution hints:   𝐢(𝑦)   𝑅(π‘₯,𝑦)   𝑆(π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦)

Proof of Theorem funcringcsetclem8ALTV
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6871 . . . 4 ( I β†Ύ (𝑋 RingHom π‘Œ)):(𝑋 RingHom π‘Œ)–1-1-ontoβ†’(𝑋 RingHom π‘Œ)
2 f1of 6833 . . . 4 (( I β†Ύ (𝑋 RingHom π‘Œ)):(𝑋 RingHom π‘Œ)–1-1-ontoβ†’(𝑋 RingHom π‘Œ) β†’ ( I β†Ύ (𝑋 RingHom π‘Œ)):(𝑋 RingHom π‘Œ)⟢(𝑋 RingHom π‘Œ))
31, 2mp1i 13 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ( I β†Ύ (𝑋 RingHom π‘Œ)):(𝑋 RingHom π‘Œ)⟢(𝑋 RingHom π‘Œ))
4 eqid 2727 . . . . . 6 (Baseβ€˜π‘‹) = (Baseβ€˜π‘‹)
5 eqid 2727 . . . . . 6 (Baseβ€˜π‘Œ) = (Baseβ€˜π‘Œ)
64, 5rhmf 20413 . . . . 5 (𝑓 ∈ (𝑋 RingHom π‘Œ) β†’ 𝑓:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ))
7 fvex 6904 . . . . . . . . . 10 (Baseβ€˜π‘Œ) ∈ V
8 fvex 6904 . . . . . . . . . 10 (Baseβ€˜π‘‹) ∈ V
97, 8pm3.2i 470 . . . . . . . . 9 ((Baseβ€˜π‘Œ) ∈ V ∧ (Baseβ€˜π‘‹) ∈ V)
10 elmapg 8849 . . . . . . . . . 10 (((Baseβ€˜π‘Œ) ∈ V ∧ (Baseβ€˜π‘‹) ∈ V) β†’ (𝑓 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)) ↔ 𝑓:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ)))
1110bicomd 222 . . . . . . . . 9 (((Baseβ€˜π‘Œ) ∈ V ∧ (Baseβ€˜π‘‹) ∈ V) β†’ (𝑓:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ↔ 𝑓 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹))))
129, 11mp1i 13 . . . . . . . 8 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑓:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) ↔ 𝑓 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹))))
1312biimpa 476 . . . . . . 7 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ 𝑓:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ)) β†’ 𝑓 ∈ ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)))
14 simpr 484 . . . . . . . . . 10 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ π‘Œ ∈ 𝐡)
15 funcringcsetcALTV.r . . . . . . . . . . 11 𝑅 = (RingCatALTVβ€˜π‘ˆ)
16 funcringcsetcALTV.s . . . . . . . . . . 11 𝑆 = (SetCatβ€˜π‘ˆ)
17 funcringcsetcALTV.b . . . . . . . . . . 11 𝐡 = (Baseβ€˜π‘…)
18 funcringcsetcALTV.c . . . . . . . . . . 11 𝐢 = (Baseβ€˜π‘†)
19 funcringcsetcALTV.u . . . . . . . . . . 11 (πœ‘ β†’ π‘ˆ ∈ WUni)
20 funcringcsetcALTV.f . . . . . . . . . . 11 (πœ‘ β†’ 𝐹 = (π‘₯ ∈ 𝐡 ↦ (Baseβ€˜π‘₯)))
2115, 16, 17, 18, 19, 20funcringcsetclem1ALTV 47298 . . . . . . . . . 10 ((πœ‘ ∧ π‘Œ ∈ 𝐡) β†’ (πΉβ€˜π‘Œ) = (Baseβ€˜π‘Œ))
2214, 21sylan2 592 . . . . . . . . 9 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (πΉβ€˜π‘Œ) = (Baseβ€˜π‘Œ))
23 simpl 482 . . . . . . . . . 10 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ 𝑋 ∈ 𝐡)
2415, 16, 17, 18, 19, 20funcringcsetclem1ALTV 47298 . . . . . . . . . 10 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) = (Baseβ€˜π‘‹))
2523, 24sylan2 592 . . . . . . . . 9 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (πΉβ€˜π‘‹) = (Baseβ€˜π‘‹))
2622, 25oveq12d 7432 . . . . . . . 8 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ((πΉβ€˜π‘Œ) ↑m (πΉβ€˜π‘‹)) = ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)))
2726adantr 480 . . . . . . 7 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ 𝑓:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ)) β†’ ((πΉβ€˜π‘Œ) ↑m (πΉβ€˜π‘‹)) = ((Baseβ€˜π‘Œ) ↑m (Baseβ€˜π‘‹)))
2813, 27eleqtrrd 2831 . . . . . 6 (((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) ∧ 𝑓:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ)) β†’ 𝑓 ∈ ((πΉβ€˜π‘Œ) ↑m (πΉβ€˜π‘‹)))
2928ex 412 . . . . 5 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑓:(Baseβ€˜π‘‹)⟢(Baseβ€˜π‘Œ) β†’ 𝑓 ∈ ((πΉβ€˜π‘Œ) ↑m (πΉβ€˜π‘‹))))
306, 29syl5 34 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑓 ∈ (𝑋 RingHom π‘Œ) β†’ 𝑓 ∈ ((πΉβ€˜π‘Œ) ↑m (πΉβ€˜π‘‹))))
3130ssrdv 3984 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋 RingHom π‘Œ) βŠ† ((πΉβ€˜π‘Œ) ↑m (πΉβ€˜π‘‹)))
323, 31fssd 6734 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ( I β†Ύ (𝑋 RingHom π‘Œ)):(𝑋 RingHom π‘Œ)⟢((πΉβ€˜π‘Œ) ↑m (πΉβ€˜π‘‹)))
33 funcringcsetcALTV.g . . . 4 (πœ‘ β†’ 𝐺 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ( I β†Ύ (π‘₯ RingHom 𝑦))))
3415, 16, 17, 18, 19, 20, 33funcringcsetclem5ALTV 47302 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (π‘‹πΊπ‘Œ) = ( I β†Ύ (𝑋 RingHom π‘Œ)))
3519adantr 480 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘ˆ ∈ WUni)
36 eqid 2727 . . . 4 (Hom β€˜π‘…) = (Hom β€˜π‘…)
3723adantl 481 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ 𝑋 ∈ 𝐡)
3814adantl 481 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ π‘Œ ∈ 𝐡)
3915, 17, 35, 36, 37, 38ringchomALTV 47287 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (𝑋(Hom β€˜π‘…)π‘Œ) = (𝑋 RingHom π‘Œ))
40 eqid 2727 . . . 4 (Hom β€˜π‘†) = (Hom β€˜π‘†)
4115, 16, 17, 18, 19, 20funcringcsetclem2ALTV 47299 . . . . 5 ((πœ‘ ∧ 𝑋 ∈ 𝐡) β†’ (πΉβ€˜π‘‹) ∈ π‘ˆ)
4223, 41sylan2 592 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (πΉβ€˜π‘‹) ∈ π‘ˆ)
4315, 16, 17, 18, 19, 20funcringcsetclem2ALTV 47299 . . . . 5 ((πœ‘ ∧ π‘Œ ∈ 𝐡) β†’ (πΉβ€˜π‘Œ) ∈ π‘ˆ)
4414, 43sylan2 592 . . . 4 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (πΉβ€˜π‘Œ) ∈ π‘ˆ)
4516, 35, 40, 42, 44setchom 18060 . . 3 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ((πΉβ€˜π‘‹)(Hom β€˜π‘†)(πΉβ€˜π‘Œ)) = ((πΉβ€˜π‘Œ) ↑m (πΉβ€˜π‘‹)))
4634, 39, 45feq123d 6705 . 2 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ ((π‘‹πΊπ‘Œ):(𝑋(Hom β€˜π‘…)π‘Œ)⟢((πΉβ€˜π‘‹)(Hom β€˜π‘†)(πΉβ€˜π‘Œ)) ↔ ( I β†Ύ (𝑋 RingHom π‘Œ)):(𝑋 RingHom π‘Œ)⟢((πΉβ€˜π‘Œ) ↑m (πΉβ€˜π‘‹))))
4732, 46mpbird 257 1 ((πœ‘ ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡)) β†’ (π‘‹πΊπ‘Œ):(𝑋(Hom β€˜π‘…)π‘Œ)⟢((πΉβ€˜π‘‹)(Hom β€˜π‘†)(πΉβ€˜π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1534   ∈ wcel 2099  Vcvv 3469   ↦ cmpt 5225   I cid 5569   β†Ύ cres 5674  βŸΆwf 6538  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  (class class class)co 7414   ∈ cmpo 7416   ↑m cmap 8836  WUnicwun 10715  Basecbs 17171  Hom chom 17235  SetCatcsetc 18055   RingHom crh 20397  RingCatALTVcringcALTV 47272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-wun 10717  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-plusg 17237  df-hom 17248  df-cco 17249  df-0g 17414  df-setc 18056  df-mhm 18731  df-ghm 19159  df-mgp 20066  df-ur 20113  df-ring 20166  df-rhm 20400  df-ringcALTV 47273
This theorem is referenced by:  funcringcsetcALTV  47307
  Copyright terms: Public domain W3C validator