MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmphllem Structured version   Visualization version   GIF version

Theorem frlmphllem 20916
Description: Lemma for frlmphl 20917. (Contributed by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
frlmphl.o 𝑂 = (0g𝑌)
frlmphl.0 0 = (0g𝑅)
frlmphl.s = (*𝑟𝑅)
frlmphl.f (𝜑𝑅 ∈ Field)
frlmphl.m ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
frlmphl.u ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
frlmphl.i (𝜑𝐼𝑊)
Assertion
Ref Expression
frlmphllem ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
Distinct variable groups:   𝐵,𝑔,𝑥   𝑔,𝐼,𝑥   𝑅,𝑔,𝑥   𝑔,𝑉,𝑥   𝑔,𝑊,𝑥   · ,𝑔,𝑥   𝐵,,𝑔,𝑥   ,𝐼   𝑅,   ,𝑉   ,𝑊   𝑔,𝑌,,𝑥   0 ,𝑔,,𝑥   𝜑,𝑔,,𝑥   , ,𝑔,,𝑥   · ,   𝑔,𝑂,   𝑥,
Allowed substitution hints:   (𝑔,)   𝑂(𝑥)

Proof of Theorem frlmphllem
StepHypRef Expression
1 frlmphl.i . . . . . . . . 9 (𝜑𝐼𝑊)
213ad2ant1 1128 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝐼𝑊)
3 simp2 1132 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑔𝑉)
4 frlmphl.y . . . . . . . . 9 𝑌 = (𝑅 freeLMod 𝐼)
5 frlmphl.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
6 frlmphl.v . . . . . . . . 9 𝑉 = (Base‘𝑌)
74, 5, 6frlmbasmap 20895 . . . . . . . 8 ((𝐼𝑊𝑔𝑉) → 𝑔 ∈ (𝐵m 𝐼))
82, 3, 7syl2anc 586 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑔 ∈ (𝐵m 𝐼))
9 elmapi 8420 . . . . . . 7 (𝑔 ∈ (𝐵m 𝐼) → 𝑔:𝐼𝐵)
108, 9syl 17 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑔:𝐼𝐵)
1110ffnd 6508 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑔 Fn 𝐼)
12 simp3 1133 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑉)
134, 5, 6frlmbasmap 20895 . . . . . . . 8 ((𝐼𝑊𝑉) → ∈ (𝐵m 𝐼))
142, 12, 13syl2anc 586 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → ∈ (𝐵m 𝐼))
15 elmapi 8420 . . . . . . 7 ( ∈ (𝐵m 𝐼) → :𝐼𝐵)
1614, 15syl 17 . . . . . 6 ((𝜑𝑔𝑉𝑉) → :𝐼𝐵)
1716ffnd 6508 . . . . 5 ((𝜑𝑔𝑉𝑉) → Fn 𝐼)
18 inidm 4193 . . . . 5 (𝐼𝐼) = 𝐼
19 eqidd 2820 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
20 eqidd 2820 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
2111, 17, 2, 2, 18, 19, 20offval 7408 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
2221oveq1d 7163 . . 3 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) = ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ))
23 ovexd 7183 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) ∈ V)
24 funmpt 6386 . . . . . 6 Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))
25 funeq 6368 . . . . . 6 ((𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) → (Fun (𝑔f · ) ↔ Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
2624, 25mpbiri 260 . . . . 5 ((𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) → Fun (𝑔f · ))
2721, 26syl 17 . . . 4 ((𝜑𝑔𝑉𝑉) → Fun (𝑔f · ))
28 frlmphl.0 . . . . . 6 0 = (0g𝑅)
294, 28, 6frlmbasfsupp 20894 . . . . 5 ((𝐼𝑊𝑔𝑉) → 𝑔 finSupp 0 )
302, 3, 29syl2anc 586 . . . 4 ((𝜑𝑔𝑉𝑉) → 𝑔 finSupp 0 )
31 frlmphl.f . . . . . . . . . 10 (𝜑𝑅 ∈ Field)
32 isfld 19503 . . . . . . . . . 10 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
3331, 32sylib 220 . . . . . . . . 9 (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
3433simpld 497 . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
35 drngring 19501 . . . . . . . 8 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3634, 35syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
37363ad2ant1 1128 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ Ring)
385, 28ring0cl 19311 . . . . . 6 (𝑅 ∈ Ring → 0𝐵)
3937, 38syl 17 . . . . 5 ((𝜑𝑔𝑉𝑉) → 0𝐵)
40 frlmphl.t . . . . . . 7 · = (.r𝑅)
415, 40, 28ringlz 19329 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 0 · 𝑥) = 0 )
4237, 41sylan 582 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐵) → ( 0 · 𝑥) = 0 )
432, 39, 10, 16, 42suppofss1d 7860 . . . 4 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))
44 fsuppsssupp 8841 . . . . 5 ((((𝑔f · ) ∈ V ∧ Fun (𝑔f · )) ∧ (𝑔 finSupp 0 ∧ ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))) → (𝑔f · ) finSupp 0 )
4544fsuppimpd 8832 . . . 4 ((((𝑔f · ) ∈ V ∧ Fun (𝑔f · )) ∧ (𝑔 finSupp 0 ∧ ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))) → ((𝑔f · ) supp 0 ) ∈ Fin)
4623, 27, 30, 43, 45syl22anc 836 . . 3 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) ∈ Fin)
4722, 46eqeltrrd 2912 . 2 ((𝜑𝑔𝑉𝑉) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin)
482mptexd 6979 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∈ V)
4939elexd 3513 . . 3 ((𝜑𝑔𝑉𝑉) → 0 ∈ V)
50 funisfsupp 8830 . . 3 ((Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∧ (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∈ V ∧ 0 ∈ V) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin))
5124, 48, 49, 50mp3an2i 1460 . 2 ((𝜑𝑔𝑉𝑉) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin))
5247, 51mpbird 259 1 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1531  wcel 2108  Vcvv 3493  wss 3934   class class class wbr 5057  cmpt 5137  Fun wfun 6342  wf 6344  cfv 6348  (class class class)co 7148  f cof 7399   supp csupp 7822  m cmap 8398  Fincfn 8501   finSupp cfsupp 8825  Basecbs 16475  .rcmulr 16558  *𝑟cstv 16559  ·𝑖cip 16562  0gc0g 16705  Ringcrg 19289  CRingccrg 19290  DivRingcdr 19494  Fieldcfield 19495   freeLMod cfrlm 20882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19232  df-ring 19291  df-drng 19496  df-field 19497  df-sra 19936  df-rgmod 19937  df-dsmm 20868  df-frlm 20883
This theorem is referenced by:  frlmphl  20917
  Copyright terms: Public domain W3C validator