MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmphllem Structured version   Visualization version   GIF version

Theorem frlmphllem 21823
Description: Lemma for frlmphl 21824. (Contributed by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
frlmphl.o 𝑂 = (0g𝑌)
frlmphl.0 0 = (0g𝑅)
frlmphl.s = (*𝑟𝑅)
frlmphl.f (𝜑𝑅 ∈ Field)
frlmphl.m ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
frlmphl.u ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
frlmphl.i (𝜑𝐼𝑊)
Assertion
Ref Expression
frlmphllem ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
Distinct variable groups:   𝐵,𝑔,𝑥   𝑔,𝐼,𝑥   𝑅,𝑔,𝑥   𝑔,𝑉,𝑥   𝑔,𝑊,𝑥   · ,𝑔,𝑥   𝐵,,𝑔,𝑥   ,𝐼   𝑅,   ,𝑉   ,𝑊   𝑔,𝑌,,𝑥   0 ,𝑔,,𝑥   𝜑,𝑔,,𝑥   , ,𝑔,,𝑥   · ,   𝑔,𝑂,   𝑥,
Allowed substitution hints:   (𝑔,)   𝑂(𝑥)

Proof of Theorem frlmphllem
StepHypRef Expression
1 frlmphl.i . . . . . . . . 9 (𝜑𝐼𝑊)
213ad2ant1 1133 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝐼𝑊)
3 simp2 1137 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑔𝑉)
4 frlmphl.y . . . . . . . . 9 𝑌 = (𝑅 freeLMod 𝐼)
5 frlmphl.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
6 frlmphl.v . . . . . . . . 9 𝑉 = (Base‘𝑌)
74, 5, 6frlmbasmap 21802 . . . . . . . 8 ((𝐼𝑊𝑔𝑉) → 𝑔 ∈ (𝐵m 𝐼))
82, 3, 7syl2anc 583 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑔 ∈ (𝐵m 𝐼))
9 elmapi 8907 . . . . . . 7 (𝑔 ∈ (𝐵m 𝐼) → 𝑔:𝐼𝐵)
108, 9syl 17 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑔:𝐼𝐵)
1110ffnd 6748 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑔 Fn 𝐼)
12 simp3 1138 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑉)
134, 5, 6frlmbasmap 21802 . . . . . . . 8 ((𝐼𝑊𝑉) → ∈ (𝐵m 𝐼))
142, 12, 13syl2anc 583 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → ∈ (𝐵m 𝐼))
15 elmapi 8907 . . . . . . 7 ( ∈ (𝐵m 𝐼) → :𝐼𝐵)
1614, 15syl 17 . . . . . 6 ((𝜑𝑔𝑉𝑉) → :𝐼𝐵)
1716ffnd 6748 . . . . 5 ((𝜑𝑔𝑉𝑉) → Fn 𝐼)
18 inidm 4248 . . . . 5 (𝐼𝐼) = 𝐼
19 eqidd 2741 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
20 eqidd 2741 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
2111, 17, 2, 2, 18, 19, 20offval 7723 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
2221oveq1d 7463 . . 3 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) = ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ))
23 ovexd 7483 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) ∈ V)
24 funmpt 6616 . . . . . 6 Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))
25 funeq 6598 . . . . . 6 ((𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) → (Fun (𝑔f · ) ↔ Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
2624, 25mpbiri 258 . . . . 5 ((𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) → Fun (𝑔f · ))
2721, 26syl 17 . . . 4 ((𝜑𝑔𝑉𝑉) → Fun (𝑔f · ))
28 frlmphl.0 . . . . . 6 0 = (0g𝑅)
294, 28, 6frlmbasfsupp 21801 . . . . 5 ((𝐼𝑊𝑔𝑉) → 𝑔 finSupp 0 )
302, 3, 29syl2anc 583 . . . 4 ((𝜑𝑔𝑉𝑉) → 𝑔 finSupp 0 )
31 frlmphl.f . . . . . . . . . 10 (𝜑𝑅 ∈ Field)
32 isfld 20762 . . . . . . . . . 10 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
3331, 32sylib 218 . . . . . . . . 9 (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
3433simpld 494 . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
35 drngring 20758 . . . . . . . 8 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3634, 35syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
37363ad2ant1 1133 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ Ring)
385, 28ring0cl 20290 . . . . . 6 (𝑅 ∈ Ring → 0𝐵)
3937, 38syl 17 . . . . 5 ((𝜑𝑔𝑉𝑉) → 0𝐵)
40 frlmphl.t . . . . . . 7 · = (.r𝑅)
415, 40, 28ringlz 20316 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 0 · 𝑥) = 0 )
4237, 41sylan 579 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐵) → ( 0 · 𝑥) = 0 )
432, 39, 10, 16, 42suppofss1d 8245 . . . 4 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))
44 fsuppsssupp 9450 . . . . 5 ((((𝑔f · ) ∈ V ∧ Fun (𝑔f · )) ∧ (𝑔 finSupp 0 ∧ ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))) → (𝑔f · ) finSupp 0 )
4544fsuppimpd 9439 . . . 4 ((((𝑔f · ) ∈ V ∧ Fun (𝑔f · )) ∧ (𝑔 finSupp 0 ∧ ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))) → ((𝑔f · ) supp 0 ) ∈ Fin)
4623, 27, 30, 43, 45syl22anc 838 . . 3 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) ∈ Fin)
4722, 46eqeltrrd 2845 . 2 ((𝜑𝑔𝑉𝑉) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin)
482mptexd 7261 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∈ V)
4939elexd 3512 . . 3 ((𝜑𝑔𝑉𝑉) → 0 ∈ V)
50 funisfsupp 9437 . . 3 ((Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∧ (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∈ V ∧ 0 ∈ V) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin))
5124, 48, 49, 50mp3an2i 1466 . 2 ((𝜑𝑔𝑉𝑉) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin))
5247, 51mpbird 257 1 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  .rcmulr 17312  *𝑟cstv 17313  ·𝑖cip 17316  0gc0g 17499  Ringcrg 20260  CRingccrg 20261  DivRingcdr 20751  Fieldcfield 20752   freeLMod cfrlm 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-drng 20753  df-field 20754  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790
This theorem is referenced by:  frlmphl  21824
  Copyright terms: Public domain W3C validator