Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmphllem Structured version   Visualization version   GIF version

Theorem frlmphllem 20550
 Description: Lemma for frlmphl 20551. (Contributed by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
frlmphl.o 𝑂 = (0g𝑌)
frlmphl.0 0 = (0g𝑅)
frlmphl.s = (*𝑟𝑅)
frlmphl.f (𝜑𝑅 ∈ Field)
frlmphl.m ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
frlmphl.u ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
frlmphl.i (𝜑𝐼𝑊)
Assertion
Ref Expression
frlmphllem ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
Distinct variable groups:   𝐵,𝑔,𝑥   𝑔,𝐼,𝑥   𝑅,𝑔,𝑥   𝑔,𝑉,𝑥   𝑔,𝑊,𝑥   · ,𝑔,𝑥   𝐵,,𝑔,𝑥   ,𝐼   𝑅,   ,𝑉   ,𝑊   𝑔,𝑌,,𝑥   0 ,𝑔,,𝑥   𝜑,𝑔,,𝑥   , ,𝑔,,𝑥   · ,   𝑔,𝑂,   𝑥,
Allowed substitution hints:   (𝑔,)   𝑂(𝑥)

Proof of Theorem frlmphllem
StepHypRef Expression
1 frlmphl.i . . . . . . . . 9 (𝜑𝐼𝑊)
213ad2ant1 1130 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝐼𝑊)
3 simp2 1134 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑔𝑉)
4 frlmphl.y . . . . . . . . 9 𝑌 = (𝑅 freeLMod 𝐼)
5 frlmphl.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
6 frlmphl.v . . . . . . . . 9 𝑉 = (Base‘𝑌)
74, 5, 6frlmbasmap 20529 . . . . . . . 8 ((𝐼𝑊𝑔𝑉) → 𝑔 ∈ (𝐵m 𝐼))
82, 3, 7syl2anc 587 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑔 ∈ (𝐵m 𝐼))
9 elmapi 8443 . . . . . . 7 (𝑔 ∈ (𝐵m 𝐼) → 𝑔:𝐼𝐵)
108, 9syl 17 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑔:𝐼𝐵)
1110ffnd 6503 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑔 Fn 𝐼)
12 simp3 1135 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑉)
134, 5, 6frlmbasmap 20529 . . . . . . . 8 ((𝐼𝑊𝑉) → ∈ (𝐵m 𝐼))
142, 12, 13syl2anc 587 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → ∈ (𝐵m 𝐼))
15 elmapi 8443 . . . . . . 7 ( ∈ (𝐵m 𝐼) → :𝐼𝐵)
1614, 15syl 17 . . . . . 6 ((𝜑𝑔𝑉𝑉) → :𝐼𝐵)
1716ffnd 6503 . . . . 5 ((𝜑𝑔𝑉𝑉) → Fn 𝐼)
18 inidm 4125 . . . . 5 (𝐼𝐼) = 𝐼
19 eqidd 2759 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
20 eqidd 2759 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
2111, 17, 2, 2, 18, 19, 20offval 7418 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
2221oveq1d 7170 . . 3 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) = ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ))
23 ovexd 7190 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) ∈ V)
24 funmpt 6377 . . . . . 6 Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))
25 funeq 6359 . . . . . 6 ((𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) → (Fun (𝑔f · ) ↔ Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
2624, 25mpbiri 261 . . . . 5 ((𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) → Fun (𝑔f · ))
2721, 26syl 17 . . . 4 ((𝜑𝑔𝑉𝑉) → Fun (𝑔f · ))
28 frlmphl.0 . . . . . 6 0 = (0g𝑅)
294, 28, 6frlmbasfsupp 20528 . . . . 5 ((𝐼𝑊𝑔𝑉) → 𝑔 finSupp 0 )
302, 3, 29syl2anc 587 . . . 4 ((𝜑𝑔𝑉𝑉) → 𝑔 finSupp 0 )
31 frlmphl.f . . . . . . . . . 10 (𝜑𝑅 ∈ Field)
32 isfld 19584 . . . . . . . . . 10 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
3331, 32sylib 221 . . . . . . . . 9 (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
3433simpld 498 . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
35 drngring 19582 . . . . . . . 8 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3634, 35syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
37363ad2ant1 1130 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ Ring)
385, 28ring0cl 19395 . . . . . 6 (𝑅 ∈ Ring → 0𝐵)
3937, 38syl 17 . . . . 5 ((𝜑𝑔𝑉𝑉) → 0𝐵)
40 frlmphl.t . . . . . . 7 · = (.r𝑅)
415, 40, 28ringlz 19413 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 0 · 𝑥) = 0 )
4237, 41sylan 583 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐵) → ( 0 · 𝑥) = 0 )
432, 39, 10, 16, 42suppofss1d 7883 . . . 4 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))
44 fsuppsssupp 8887 . . . . 5 ((((𝑔f · ) ∈ V ∧ Fun (𝑔f · )) ∧ (𝑔 finSupp 0 ∧ ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))) → (𝑔f · ) finSupp 0 )
4544fsuppimpd 8878 . . . 4 ((((𝑔f · ) ∈ V ∧ Fun (𝑔f · )) ∧ (𝑔 finSupp 0 ∧ ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))) → ((𝑔f · ) supp 0 ) ∈ Fin)
4623, 27, 30, 43, 45syl22anc 837 . . 3 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) ∈ Fin)
4722, 46eqeltrrd 2853 . 2 ((𝜑𝑔𝑉𝑉) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin)
482mptexd 6983 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∈ V)
4939elexd 3430 . . 3 ((𝜑𝑔𝑉𝑉) → 0 ∈ V)
50 funisfsupp 8876 . . 3 ((Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∧ (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∈ V ∧ 0 ∈ V) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin))
5124, 48, 49, 50mp3an2i 1463 . 2 ((𝜑𝑔𝑉𝑉) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin))
5247, 51mpbird 260 1 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  Vcvv 3409   ⊆ wss 3860   class class class wbr 5035   ↦ cmpt 5115  Fun wfun 6333  ⟶wf 6335  ‘cfv 6339  (class class class)co 7155   ∘f cof 7408   supp csupp 7840   ↑m cmap 8421  Fincfn 8532   finSupp cfsupp 8871  Basecbs 16546  .rcmulr 16629  *𝑟cstv 16630  ·𝑖cip 16633  0gc0g 16776  Ringcrg 19370  CRingccrg 19371  DivRingcdr 19575  Fieldcfield 19576   freeLMod cfrlm 20516 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-om 7585  df-1st 7698  df-2nd 7699  df-supp 7841  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-ixp 8485  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fsupp 8872  df-sup 8944  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-fz 12945  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ress 16554  df-plusg 16641  df-mulr 16642  df-sca 16644  df-vsca 16645  df-ip 16646  df-tset 16647  df-ple 16648  df-ds 16650  df-hom 16652  df-cco 16653  df-0g 16778  df-prds 16784  df-pws 16786  df-mgm 17923  df-sgrp 17972  df-mnd 17983  df-grp 18177  df-minusg 18178  df-mgp 19313  df-ring 19372  df-drng 19577  df-field 19578  df-sra 20017  df-rgmod 20018  df-dsmm 20502  df-frlm 20517 This theorem is referenced by:  frlmphl  20551
 Copyright terms: Public domain W3C validator