MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmphllem Structured version   Visualization version   GIF version

Theorem frlmphllem 20987
Description: Lemma for frlmphl 20988. (Contributed by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
frlmphl.o 𝑂 = (0g𝑌)
frlmphl.0 0 = (0g𝑅)
frlmphl.s = (*𝑟𝑅)
frlmphl.f (𝜑𝑅 ∈ Field)
frlmphl.m ((𝜑𝑔𝑉 ∧ (𝑔 , 𝑔) = 0 ) → 𝑔 = 𝑂)
frlmphl.u ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
frlmphl.i (𝜑𝐼𝑊)
Assertion
Ref Expression
frlmphllem ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
Distinct variable groups:   𝐵,𝑔,𝑥   𝑔,𝐼,𝑥   𝑅,𝑔,𝑥   𝑔,𝑉,𝑥   𝑔,𝑊,𝑥   · ,𝑔,𝑥   𝐵,,𝑔,𝑥   ,𝐼   𝑅,   ,𝑉   ,𝑊   𝑔,𝑌,,𝑥   0 ,𝑔,,𝑥   𝜑,𝑔,,𝑥   , ,𝑔,,𝑥   · ,   𝑔,𝑂,   𝑥,
Allowed substitution hints:   (𝑔,)   𝑂(𝑥)

Proof of Theorem frlmphllem
StepHypRef Expression
1 frlmphl.i . . . . . . . . 9 (𝜑𝐼𝑊)
213ad2ant1 1132 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝐼𝑊)
3 simp2 1136 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑔𝑉)
4 frlmphl.y . . . . . . . . 9 𝑌 = (𝑅 freeLMod 𝐼)
5 frlmphl.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
6 frlmphl.v . . . . . . . . 9 𝑉 = (Base‘𝑌)
74, 5, 6frlmbasmap 20966 . . . . . . . 8 ((𝐼𝑊𝑔𝑉) → 𝑔 ∈ (𝐵m 𝐼))
82, 3, 7syl2anc 584 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → 𝑔 ∈ (𝐵m 𝐼))
9 elmapi 8637 . . . . . . 7 (𝑔 ∈ (𝐵m 𝐼) → 𝑔:𝐼𝐵)
108, 9syl 17 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑔:𝐼𝐵)
1110ffnd 6601 . . . . 5 ((𝜑𝑔𝑉𝑉) → 𝑔 Fn 𝐼)
12 simp3 1137 . . . . . . . 8 ((𝜑𝑔𝑉𝑉) → 𝑉)
134, 5, 6frlmbasmap 20966 . . . . . . . 8 ((𝐼𝑊𝑉) → ∈ (𝐵m 𝐼))
142, 12, 13syl2anc 584 . . . . . . 7 ((𝜑𝑔𝑉𝑉) → ∈ (𝐵m 𝐼))
15 elmapi 8637 . . . . . . 7 ( ∈ (𝐵m 𝐼) → :𝐼𝐵)
1614, 15syl 17 . . . . . 6 ((𝜑𝑔𝑉𝑉) → :𝐼𝐵)
1716ffnd 6601 . . . . 5 ((𝜑𝑔𝑉𝑉) → Fn 𝐼)
18 inidm 4152 . . . . 5 (𝐼𝐼) = 𝐼
19 eqidd 2739 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑔𝑥) = (𝑔𝑥))
20 eqidd 2739 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐼) → (𝑥) = (𝑥))
2111, 17, 2, 2, 18, 19, 20offval 7542 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))))
2221oveq1d 7290 . . 3 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) = ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ))
23 ovexd 7310 . . . 4 ((𝜑𝑔𝑉𝑉) → (𝑔f · ) ∈ V)
24 funmpt 6472 . . . . . 6 Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))
25 funeq 6454 . . . . . 6 ((𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) → (Fun (𝑔f · ) ↔ Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥)))))
2624, 25mpbiri 257 . . . . 5 ((𝑔f · ) = (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) → Fun (𝑔f · ))
2721, 26syl 17 . . . 4 ((𝜑𝑔𝑉𝑉) → Fun (𝑔f · ))
28 frlmphl.0 . . . . . 6 0 = (0g𝑅)
294, 28, 6frlmbasfsupp 20965 . . . . 5 ((𝐼𝑊𝑔𝑉) → 𝑔 finSupp 0 )
302, 3, 29syl2anc 584 . . . 4 ((𝜑𝑔𝑉𝑉) → 𝑔 finSupp 0 )
31 frlmphl.f . . . . . . . . . 10 (𝜑𝑅 ∈ Field)
32 isfld 20000 . . . . . . . . . 10 (𝑅 ∈ Field ↔ (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
3331, 32sylib 217 . . . . . . . . 9 (𝜑 → (𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing))
3433simpld 495 . . . . . . . 8 (𝜑𝑅 ∈ DivRing)
35 drngring 19998 . . . . . . . 8 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3634, 35syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
37363ad2ant1 1132 . . . . . 6 ((𝜑𝑔𝑉𝑉) → 𝑅 ∈ Ring)
385, 28ring0cl 19808 . . . . . 6 (𝑅 ∈ Ring → 0𝐵)
3937, 38syl 17 . . . . 5 ((𝜑𝑔𝑉𝑉) → 0𝐵)
40 frlmphl.t . . . . . . 7 · = (.r𝑅)
415, 40, 28ringlz 19826 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → ( 0 · 𝑥) = 0 )
4237, 41sylan 580 . . . . 5 (((𝜑𝑔𝑉𝑉) ∧ 𝑥𝐵) → ( 0 · 𝑥) = 0 )
432, 39, 10, 16, 42suppofss1d 8020 . . . 4 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))
44 fsuppsssupp 9144 . . . . 5 ((((𝑔f · ) ∈ V ∧ Fun (𝑔f · )) ∧ (𝑔 finSupp 0 ∧ ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))) → (𝑔f · ) finSupp 0 )
4544fsuppimpd 9135 . . . 4 ((((𝑔f · ) ∈ V ∧ Fun (𝑔f · )) ∧ (𝑔 finSupp 0 ∧ ((𝑔f · ) supp 0 ) ⊆ (𝑔 supp 0 ))) → ((𝑔f · ) supp 0 ) ∈ Fin)
4623, 27, 30, 43, 45syl22anc 836 . . 3 ((𝜑𝑔𝑉𝑉) → ((𝑔f · ) supp 0 ) ∈ Fin)
4722, 46eqeltrrd 2840 . 2 ((𝜑𝑔𝑉𝑉) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin)
482mptexd 7100 . . 3 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∈ V)
4939elexd 3452 . . 3 ((𝜑𝑔𝑉𝑉) → 0 ∈ V)
50 funisfsupp 9133 . . 3 ((Fun (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∧ (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) ∈ V ∧ 0 ∈ V) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin))
5124, 48, 49, 50mp3an2i 1465 . 2 ((𝜑𝑔𝑉𝑉) → ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) supp 0 ) ∈ Fin))
5247, 51mpbird 256 1 ((𝜑𝑔𝑉𝑉) → (𝑥𝐼 ↦ ((𝑔𝑥) · (𝑥))) finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531   supp csupp 7977  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  Basecbs 16912  .rcmulr 16963  *𝑟cstv 16964  ·𝑖cip 16967  0gc0g 17150  Ringcrg 19783  CRingccrg 19784  DivRingcdr 19991  Fieldcfield 19992   freeLMod cfrlm 20953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mgp 19721  df-ring 19785  df-drng 19993  df-field 19994  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954
This theorem is referenced by:  frlmphl  20988
  Copyright terms: Public domain W3C validator