Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsg Structured version   Visualization version   GIF version

Theorem elfunsg 35880
Description: Closed form of elfuns 35879. (Contributed by Scott Fenton, 2-May-2014.)
Assertion
Ref Expression
elfunsg (𝐹𝑉 → (𝐹 Funs ↔ Fun 𝐹))

Proof of Theorem elfunsg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2832 . 2 (𝑓 = 𝐹 → (𝑓 Funs 𝐹 Funs ))
2 funeq 6598 . 2 (𝑓 = 𝐹 → (Fun 𝑓 ↔ Fun 𝐹))
3 vex 3492 . . 3 𝑓 ∈ V
43elfuns 35879 . 2 (𝑓 Funs ↔ Fun 𝑓)
51, 2, 4vtoclbg 3569 1 (𝐹𝑉 → (𝐹 Funs ↔ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Fun wfun 6567   Funs cfuns 35801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-txp 35818  df-fix 35823  df-funs 35825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator