| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsg | Structured version Visualization version GIF version | ||
| Description: Closed form of elfuns 35910. (Contributed by Scott Fenton, 2-May-2014.) |
| Ref | Expression |
|---|---|
| elfunsg | ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Funs ↔ Fun 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2817 | . 2 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ Funs ↔ 𝐹 ∈ Funs )) | |
| 2 | funeq 6539 | . 2 ⊢ (𝑓 = 𝐹 → (Fun 𝑓 ↔ Fun 𝐹)) | |
| 3 | vex 3454 | . . 3 ⊢ 𝑓 ∈ V | |
| 4 | 3 | elfuns 35910 | . 2 ⊢ (𝑓 ∈ Funs ↔ Fun 𝑓) |
| 5 | 1, 2, 4 | vtoclbg 3526 | 1 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Funs ↔ Fun 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Fun wfun 6508 Funs cfuns 35832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-eprel 5541 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-1st 7971 df-2nd 7972 df-txp 35849 df-fix 35854 df-funs 35856 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |