| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elfunsg | Structured version Visualization version GIF version | ||
| Description: Closed form of elfuns 35933. (Contributed by Scott Fenton, 2-May-2014.) |
| Ref | Expression |
|---|---|
| elfunsg | ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Funs ↔ Fun 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2822 | . 2 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ Funs ↔ 𝐹 ∈ Funs )) | |
| 2 | funeq 6556 | . 2 ⊢ (𝑓 = 𝐹 → (Fun 𝑓 ↔ Fun 𝐹)) | |
| 3 | vex 3463 | . . 3 ⊢ 𝑓 ∈ V | |
| 4 | 3 | elfuns 35933 | . 2 ⊢ (𝑓 ∈ Funs ↔ Fun 𝑓) |
| 5 | 1, 2, 4 | vtoclbg 3536 | 1 ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ Funs ↔ Fun 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Fun wfun 6525 Funs cfuns 35855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-eprel 5553 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-1st 7988 df-2nd 7989 df-txp 35872 df-fix 35877 df-funs 35879 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |