Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsg Structured version   Visualization version   GIF version

Theorem elfunsg 35911
Description: Closed form of elfuns 35910. (Contributed by Scott Fenton, 2-May-2014.)
Assertion
Ref Expression
elfunsg (𝐹𝑉 → (𝐹 Funs ↔ Fun 𝐹))

Proof of Theorem elfunsg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2817 . 2 (𝑓 = 𝐹 → (𝑓 Funs 𝐹 Funs ))
2 funeq 6539 . 2 (𝑓 = 𝐹 → (Fun 𝑓 ↔ Fun 𝐹))
3 vex 3454 . . 3 𝑓 ∈ V
43elfuns 35910 . 2 (𝑓 Funs ↔ Fun 𝑓)
51, 2, 4vtoclbg 3526 1 (𝐹𝑉 → (𝐹 Funs ↔ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Fun wfun 6508   Funs cfuns 35832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-1st 7971  df-2nd 7972  df-txp 35849  df-fix 35854  df-funs 35856
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator