Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfunsg Structured version   Visualization version   GIF version

Theorem elfunsg 35904
Description: Closed form of elfuns 35903. (Contributed by Scott Fenton, 2-May-2014.)
Assertion
Ref Expression
elfunsg (𝐹𝑉 → (𝐹 Funs ↔ Fun 𝐹))

Proof of Theorem elfunsg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2816 . 2 (𝑓 = 𝐹 → (𝑓 Funs 𝐹 Funs ))
2 funeq 6536 . 2 (𝑓 = 𝐹 → (Fun 𝑓 ↔ Fun 𝐹))
3 vex 3451 . . 3 𝑓 ∈ V
43elfuns 35903 . 2 (𝑓 Funs ↔ Fun 𝑓)
51, 2, 4vtoclbg 3523 1 (𝐹𝑉 → (𝐹 Funs ↔ Fun 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Fun wfun 6505   Funs cfuns 35825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1st 7968  df-2nd 7969  df-txp 35842  df-fix 35847  df-funs 35849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator