![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oldval | Structured version Visualization version GIF version |
Description: The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
oldval | ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-made 27687 | . . . . 5 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
2 | recsfnon 8409 | . . . . . . 7 ⊢ recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) Fn On | |
3 | fnfun 6649 | . . . . . . 7 ⊢ (recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) Fn On → Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))))) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) |
5 | funeq 6568 | . . . . . 6 ⊢ ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) → (Fun M ↔ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))))) | |
6 | 4, 5 | mpbiri 258 | . . . . 5 ⊢ ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) → Fun M ) |
7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ Fun M |
8 | funimaexg 6634 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V) | |
9 | 7, 8 | mpan 687 | . . 3 ⊢ (𝐴 ∈ On → ( M “ 𝐴) ∈ V) |
10 | 9 | uniexd 7736 | . 2 ⊢ (𝐴 ∈ On → ∪ ( M “ 𝐴) ∈ V) |
11 | imaeq2 6055 | . . . 4 ⊢ (𝑥 = 𝐴 → ( M “ 𝑥) = ( M “ 𝐴)) | |
12 | 11 | unieqd 4922 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ( M “ 𝑥) = ∪ ( M “ 𝐴)) |
13 | df-old 27688 | . . 3 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
14 | 12, 13 | fvmptg 6996 | . 2 ⊢ ((𝐴 ∈ On ∧ ∪ ( M “ 𝐴) ∈ V) → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
15 | 10, 14 | mpdan 684 | 1 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 𝒫 cpw 4602 ∪ cuni 4908 ↦ cmpt 5231 × cxp 5674 ran crn 5677 “ cima 5679 Oncon0 6364 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 recscrecs 8376 |s cscut 27628 M cmade 27682 O cold 27683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-made 27687 df-old 27688 |
This theorem is referenced by: old0 27699 elmade2 27708 elold 27709 old1 27715 madeoldsuc 27724 |
Copyright terms: Public domain | W3C validator |