Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oldval Structured version   Visualization version   GIF version

Theorem oldval 33965
Description: The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
oldval (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))

Proof of Theorem oldval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-made 33958 . . . . 5 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
2 recsfnon 8205 . . . . . . 7 recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) Fn On
3 fnfun 6517 . . . . . . 7 (recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) Fn On → Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))))
42, 3ax-mp 5 . . . . . 6 Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
5 funeq 6438 . . . . . 6 ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) → (Fun M ↔ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))))
64, 5mpbiri 257 . . . . 5 ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) → Fun M )
71, 6ax-mp 5 . . . 4 Fun M
8 funimaexg 6504 . . . 4 ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V)
97, 8mpan 686 . . 3 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
109uniexd 7573 . 2 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
11 imaeq2 5954 . . . 4 (𝑥 = 𝐴 → ( M “ 𝑥) = ( M “ 𝐴))
1211unieqd 4850 . . 3 (𝑥 = 𝐴 ( M “ 𝑥) = ( M “ 𝐴))
13 df-old 33959 . . 3 O = (𝑥 ∈ On ↦ ( M “ 𝑥))
1412, 13fvmptg 6855 . 2 ((𝐴 ∈ On ∧ ( M “ 𝐴) ∈ V) → ( O ‘𝐴) = ( M “ 𝐴))
1510, 14mpdan 683 1 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  𝒫 cpw 4530   cuni 4836  cmpt 5153   × cxp 5578  ran crn 5581  cima 5583  Oncon0 6251  Fun wfun 6412   Fn wfn 6413  cfv 6418  recscrecs 8172   |s cscut 33904   M cmade 33953   O cold 33954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-made 33958  df-old 33959
This theorem is referenced by:  old0  33970  elmade2  33979  elold  33980  madeoldsuc  33994
  Copyright terms: Public domain W3C validator