MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldval Structured version   Visualization version   GIF version

Theorem oldval 27788
Description: The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
oldval (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))

Proof of Theorem oldval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-made 27781 . . . . 5 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
2 recsfnon 8317 . . . . . . 7 recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) Fn On
3 fnfun 6577 . . . . . . 7 (recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) Fn On → Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))))
42, 3ax-mp 5 . . . . . 6 Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
5 funeq 6497 . . . . . 6 ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) → (Fun M ↔ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))))
64, 5mpbiri 258 . . . . 5 ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) → Fun M )
71, 6ax-mp 5 . . . 4 Fun M
8 funimaexg 6564 . . . 4 ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V)
97, 8mpan 690 . . 3 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
109uniexd 7670 . 2 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
11 imaeq2 6002 . . . 4 (𝑥 = 𝐴 → ( M “ 𝑥) = ( M “ 𝐴))
1211unieqd 4870 . . 3 (𝑥 = 𝐴 ( M “ 𝑥) = ( M “ 𝐴))
13 df-old 27782 . . 3 O = (𝑥 ∈ On ↦ ( M “ 𝑥))
1412, 13fvmptg 6922 . 2 ((𝐴 ∈ On ∧ ( M “ 𝐴) ∈ V) → ( O ‘𝐴) = ( M “ 𝐴))
1510, 14mpdan 687 1 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  Vcvv 3434  𝒫 cpw 4548   cuni 4857  cmpt 5170   × cxp 5612  ran crn 5615  cima 5617  Oncon0 6302  Fun wfun 6471   Fn wfn 6472  cfv 6477  recscrecs 8285   |s cscut 27715   M cmade 27776   O cold 27777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-made 27781  df-old 27782
This theorem is referenced by:  old0  27793  elmade2  27806  elold  27807  old1  27813  oldss  27816  madeoldsuc  27823  oldfi  27852
  Copyright terms: Public domain W3C validator