MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldval Structured version   Visualization version   GIF version

Theorem oldval 27814
Description: The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
oldval (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))

Proof of Theorem oldval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-made 27807 . . . . 5 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
2 recsfnon 8417 . . . . . . 7 recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) Fn On
3 fnfun 6638 . . . . . . 7 (recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) Fn On → Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))))
42, 3ax-mp 5 . . . . . 6 Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
5 funeq 6556 . . . . . 6 ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) → (Fun M ↔ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))))
64, 5mpbiri 258 . . . . 5 ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥)))) → Fun M )
71, 6ax-mp 5 . . . 4 Fun M
8 funimaexg 6623 . . . 4 ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V)
97, 8mpan 690 . . 3 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
109uniexd 7736 . 2 (𝐴 ∈ On → ( M “ 𝐴) ∈ V)
11 imaeq2 6043 . . . 4 (𝑥 = 𝐴 → ( M “ 𝑥) = ( M “ 𝐴))
1211unieqd 4896 . . 3 (𝑥 = 𝐴 ( M “ 𝑥) = ( M “ 𝐴))
13 df-old 27808 . . 3 O = (𝑥 ∈ On ↦ ( M “ 𝑥))
1412, 13fvmptg 6984 . 2 ((𝐴 ∈ On ∧ ( M “ 𝐴) ∈ V) → ( O ‘𝐴) = ( M “ 𝐴))
1510, 14mpdan 687 1 (𝐴 ∈ On → ( O ‘𝐴) = ( M “ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  𝒫 cpw 4575   cuni 4883  cmpt 5201   × cxp 5652  ran crn 5655  cima 5657  Oncon0 6352  Fun wfun 6525   Fn wfn 6526  cfv 6531  recscrecs 8384   |s cscut 27746   M cmade 27802   O cold 27803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-made 27807  df-old 27808
This theorem is referenced by:  old0  27819  elmade2  27832  elold  27833  old1  27839  madeoldsuc  27848  oldfi  27877
  Copyright terms: Public domain W3C validator