| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldval | Structured version Visualization version GIF version | ||
| Description: The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| oldval | ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-made 27761 | . . . . 5 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
| 2 | recsfnon 8373 | . . . . . . 7 ⊢ recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) Fn On | |
| 3 | fnfun 6620 | . . . . . . 7 ⊢ (recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) Fn On → Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) |
| 5 | funeq 6538 | . . . . . 6 ⊢ ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) → (Fun M ↔ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))))) | |
| 6 | 4, 5 | mpbiri 258 | . . . . 5 ⊢ ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) → Fun M ) |
| 7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ Fun M |
| 8 | funimaexg 6605 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V) | |
| 9 | 7, 8 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → ( M “ 𝐴) ∈ V) |
| 10 | 9 | uniexd 7720 | . 2 ⊢ (𝐴 ∈ On → ∪ ( M “ 𝐴) ∈ V) |
| 11 | imaeq2 6029 | . . . 4 ⊢ (𝑥 = 𝐴 → ( M “ 𝑥) = ( M “ 𝐴)) | |
| 12 | 11 | unieqd 4886 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ( M “ 𝑥) = ∪ ( M “ 𝐴)) |
| 13 | df-old 27762 | . . 3 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
| 14 | 12, 13 | fvmptg 6968 | . 2 ⊢ ((𝐴 ∈ On ∧ ∪ ( M “ 𝐴) ∈ V) → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 15 | 10, 14 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 𝒫 cpw 4565 ∪ cuni 4873 ↦ cmpt 5190 × cxp 5638 ran crn 5641 “ cima 5643 Oncon0 6334 Fun wfun 6507 Fn wfn 6508 ‘cfv 6513 recscrecs 8341 |s cscut 27700 M cmade 27756 O cold 27757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-made 27761 df-old 27762 |
| This theorem is referenced by: old0 27773 elmade2 27786 elold 27787 old1 27793 madeoldsuc 27802 oldfi 27831 |
| Copyright terms: Public domain | W3C validator |