| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldval | Structured version Visualization version GIF version | ||
| Description: The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| oldval | ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-made 27807 | . . . . 5 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
| 2 | recsfnon 8417 | . . . . . . 7 ⊢ recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) Fn On | |
| 3 | fnfun 6638 | . . . . . . 7 ⊢ (recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) Fn On → Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) |
| 5 | funeq 6556 | . . . . . 6 ⊢ ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) → (Fun M ↔ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))))) | |
| 6 | 4, 5 | mpbiri 258 | . . . . 5 ⊢ ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) → Fun M ) |
| 7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ Fun M |
| 8 | funimaexg 6623 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V) | |
| 9 | 7, 8 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → ( M “ 𝐴) ∈ V) |
| 10 | 9 | uniexd 7736 | . 2 ⊢ (𝐴 ∈ On → ∪ ( M “ 𝐴) ∈ V) |
| 11 | imaeq2 6043 | . . . 4 ⊢ (𝑥 = 𝐴 → ( M “ 𝑥) = ( M “ 𝐴)) | |
| 12 | 11 | unieqd 4896 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ( M “ 𝑥) = ∪ ( M “ 𝐴)) |
| 13 | df-old 27808 | . . 3 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
| 14 | 12, 13 | fvmptg 6984 | . 2 ⊢ ((𝐴 ∈ On ∧ ∪ ( M “ 𝐴) ∈ V) → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 15 | 10, 14 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 𝒫 cpw 4575 ∪ cuni 4883 ↦ cmpt 5201 × cxp 5652 ran crn 5655 “ cima 5657 Oncon0 6352 Fun wfun 6525 Fn wfn 6526 ‘cfv 6531 recscrecs 8384 |s cscut 27746 M cmade 27802 O cold 27803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-made 27807 df-old 27808 |
| This theorem is referenced by: old0 27819 elmade2 27832 elold 27833 old1 27839 madeoldsuc 27848 oldfi 27877 |
| Copyright terms: Public domain | W3C validator |