| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldval | Structured version Visualization version GIF version | ||
| Description: The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| oldval | ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-made 27781 | . . . . 5 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
| 2 | recsfnon 8317 | . . . . . . 7 ⊢ recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) Fn On | |
| 3 | fnfun 6577 | . . . . . . 7 ⊢ (recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) Fn On → Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) |
| 5 | funeq 6497 | . . . . . 6 ⊢ ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) → (Fun M ↔ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))))) | |
| 6 | 4, 5 | mpbiri 258 | . . . . 5 ⊢ ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) → Fun M ) |
| 7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ Fun M |
| 8 | funimaexg 6564 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V) | |
| 9 | 7, 8 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → ( M “ 𝐴) ∈ V) |
| 10 | 9 | uniexd 7670 | . 2 ⊢ (𝐴 ∈ On → ∪ ( M “ 𝐴) ∈ V) |
| 11 | imaeq2 6002 | . . . 4 ⊢ (𝑥 = 𝐴 → ( M “ 𝑥) = ( M “ 𝐴)) | |
| 12 | 11 | unieqd 4870 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ( M “ 𝑥) = ∪ ( M “ 𝐴)) |
| 13 | df-old 27782 | . . 3 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
| 14 | 12, 13 | fvmptg 6922 | . 2 ⊢ ((𝐴 ∈ On ∧ ∪ ( M “ 𝐴) ∈ V) → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 15 | 10, 14 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 Vcvv 3434 𝒫 cpw 4548 ∪ cuni 4857 ↦ cmpt 5170 × cxp 5612 ran crn 5615 “ cima 5617 Oncon0 6302 Fun wfun 6471 Fn wfn 6472 ‘cfv 6477 recscrecs 8285 |s cscut 27715 M cmade 27776 O cold 27777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-made 27781 df-old 27782 |
| This theorem is referenced by: old0 27793 elmade2 27806 elold 27807 old1 27813 oldss 27816 madeoldsuc 27823 oldfi 27852 |
| Copyright terms: Public domain | W3C validator |