| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldval | Structured version Visualization version GIF version | ||
| Description: The value of the old options function. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| oldval | ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-made 27794 | . . . . 5 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
| 2 | recsfnon 8328 | . . . . . . 7 ⊢ recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) Fn On | |
| 3 | fnfun 6587 | . . . . . . 7 ⊢ (recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) Fn On → Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥))))) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) |
| 5 | funeq 6507 | . . . . . 6 ⊢ ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) → (Fun M ↔ Fun recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))))) | |
| 6 | 4, 5 | mpbiri 258 | . . . . 5 ⊢ ( M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) → Fun M ) |
| 7 | 1, 6 | ax-mp 5 | . . . 4 ⊢ Fun M |
| 8 | funimaexg 6574 | . . . 4 ⊢ ((Fun M ∧ 𝐴 ∈ On) → ( M “ 𝐴) ∈ V) | |
| 9 | 7, 8 | mpan 690 | . . 3 ⊢ (𝐴 ∈ On → ( M “ 𝐴) ∈ V) |
| 10 | 9 | uniexd 7681 | . 2 ⊢ (𝐴 ∈ On → ∪ ( M “ 𝐴) ∈ V) |
| 11 | imaeq2 6010 | . . . 4 ⊢ (𝑥 = 𝐴 → ( M “ 𝑥) = ( M “ 𝐴)) | |
| 12 | 11 | unieqd 4871 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ ( M “ 𝑥) = ∪ ( M “ 𝐴)) |
| 13 | df-old 27795 | . . 3 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
| 14 | 12, 13 | fvmptg 6933 | . 2 ⊢ ((𝐴 ∈ On ∧ ∪ ( M “ 𝐴) ∈ V) → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| 15 | 10, 14 | mpdan 687 | 1 ⊢ (𝐴 ∈ On → ( O ‘𝐴) = ∪ ( M “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4549 ∪ cuni 4858 ↦ cmpt 5174 × cxp 5617 ran crn 5620 “ cima 5622 Oncon0 6312 Fun wfun 6481 Fn wfn 6482 ‘cfv 6487 recscrecs 8296 |s cscut 27728 M cmade 27789 O cold 27790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-made 27794 df-old 27795 |
| This theorem is referenced by: old0 27806 elmade2 27819 elold 27820 old1 27826 oldss 27829 madeoldsuc 27836 oldfi 27865 |
| Copyright terms: Public domain | W3C validator |