MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundmeng Structured version   Visualization version   GIF version

Theorem fundmeng 8853
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
Assertion
Ref Expression
fundmeng ((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)

Proof of Theorem fundmeng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funeq 6479 . . . 4 (𝑥 = 𝐹 → (Fun 𝑥 ↔ Fun 𝐹))
2 dmeq 5821 . . . . 5 (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹)
3 id 22 . . . . 5 (𝑥 = 𝐹𝑥 = 𝐹)
42, 3breq12d 5094 . . . 4 (𝑥 = 𝐹 → (dom 𝑥𝑥 ↔ dom 𝐹𝐹))
51, 4imbi12d 346 . . 3 (𝑥 = 𝐹 → ((Fun 𝑥 → dom 𝑥𝑥) ↔ (Fun 𝐹 → dom 𝐹𝐹)))
6 vex 3441 . . . 4 𝑥 ∈ V
76fundmen 8852 . . 3 (Fun 𝑥 → dom 𝑥𝑥)
85, 7vtoclg 3510 . 2 (𝐹𝑉 → (Fun 𝐹 → dom 𝐹𝐹))
98imp 408 1 ((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104   class class class wbr 5081  dom cdm 5596  Fun wfun 6448  cen 8757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5496  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-en 8761
This theorem is referenced by:  fndmeng  8856
  Copyright terms: Public domain W3C validator