| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fundmeng | Structured version Visualization version GIF version | ||
| Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| fundmeng | ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6561 | . . . 4 ⊢ (𝑥 = 𝐹 → (Fun 𝑥 ↔ Fun 𝐹)) | |
| 2 | dmeq 5888 | . . . . 5 ⊢ (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐹 → 𝑥 = 𝐹) | |
| 4 | 2, 3 | breq12d 5137 | . . . 4 ⊢ (𝑥 = 𝐹 → (dom 𝑥 ≈ 𝑥 ↔ dom 𝐹 ≈ 𝐹)) |
| 5 | 1, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐹 → ((Fun 𝑥 → dom 𝑥 ≈ 𝑥) ↔ (Fun 𝐹 → dom 𝐹 ≈ 𝐹))) |
| 6 | vex 3468 | . . . 4 ⊢ 𝑥 ∈ V | |
| 7 | 6 | fundmen 9050 | . . 3 ⊢ (Fun 𝑥 → dom 𝑥 ≈ 𝑥) |
| 8 | 5, 7 | vtoclg 3538 | . 2 ⊢ (𝐹 ∈ 𝑉 → (Fun 𝐹 → dom 𝐹 ≈ 𝐹)) |
| 9 | 8 | imp 406 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 dom cdm 5659 Fun wfun 6530 ≈ cen 8961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-en 8965 |
| This theorem is referenced by: fndmeng 9054 |
| Copyright terms: Public domain | W3C validator |