| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fundmeng | Structured version Visualization version GIF version | ||
| Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| fundmeng | ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6502 | . . . 4 ⊢ (𝑥 = 𝐹 → (Fun 𝑥 ↔ Fun 𝐹)) | |
| 2 | dmeq 5846 | . . . . 5 ⊢ (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐹 → 𝑥 = 𝐹) | |
| 4 | 2, 3 | breq12d 5105 | . . . 4 ⊢ (𝑥 = 𝐹 → (dom 𝑥 ≈ 𝑥 ↔ dom 𝐹 ≈ 𝐹)) |
| 5 | 1, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐹 → ((Fun 𝑥 → dom 𝑥 ≈ 𝑥) ↔ (Fun 𝐹 → dom 𝐹 ≈ 𝐹))) |
| 6 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 7 | 6 | fundmen 8956 | . . 3 ⊢ (Fun 𝑥 → dom 𝑥 ≈ 𝑥) |
| 8 | 5, 7 | vtoclg 3509 | . 2 ⊢ (𝐹 ∈ 𝑉 → (Fun 𝐹 → dom 𝐹 ≈ 𝐹)) |
| 9 | 8 | imp 406 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 dom cdm 5619 Fun wfun 6476 ≈ cen 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-en 8873 |
| This theorem is referenced by: fndmeng 8960 |
| Copyright terms: Public domain | W3C validator |