| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fundmeng | Structured version Visualization version GIF version | ||
| Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| fundmeng | ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6501 | . . . 4 ⊢ (𝑥 = 𝐹 → (Fun 𝑥 ↔ Fun 𝐹)) | |
| 2 | dmeq 5842 | . . . . 5 ⊢ (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐹 → 𝑥 = 𝐹) | |
| 4 | 2, 3 | breq12d 5102 | . . . 4 ⊢ (𝑥 = 𝐹 → (dom 𝑥 ≈ 𝑥 ↔ dom 𝐹 ≈ 𝐹)) |
| 5 | 1, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐹 → ((Fun 𝑥 → dom 𝑥 ≈ 𝑥) ↔ (Fun 𝐹 → dom 𝐹 ≈ 𝐹))) |
| 6 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 7 | 6 | fundmen 8953 | . . 3 ⊢ (Fun 𝑥 → dom 𝑥 ≈ 𝑥) |
| 8 | 5, 7 | vtoclg 3507 | . 2 ⊢ (𝐹 ∈ 𝑉 → (Fun 𝐹 → dom 𝐹 ≈ 𝐹)) |
| 9 | 8 | imp 406 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 dom cdm 5614 Fun wfun 6475 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-en 8870 |
| This theorem is referenced by: fndmeng 8957 |
| Copyright terms: Public domain | W3C validator |