MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fundmeng Structured version   Visualization version   GIF version

Theorem fundmeng 8957
Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.)
Assertion
Ref Expression
fundmeng ((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)

Proof of Theorem fundmeng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funeq 6502 . . . 4 (𝑥 = 𝐹 → (Fun 𝑥 ↔ Fun 𝐹))
2 dmeq 5846 . . . . 5 (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹)
3 id 22 . . . . 5 (𝑥 = 𝐹𝑥 = 𝐹)
42, 3breq12d 5105 . . . 4 (𝑥 = 𝐹 → (dom 𝑥𝑥 ↔ dom 𝐹𝐹))
51, 4imbi12d 344 . . 3 (𝑥 = 𝐹 → ((Fun 𝑥 → dom 𝑥𝑥) ↔ (Fun 𝐹 → dom 𝐹𝐹)))
6 vex 3440 . . . 4 𝑥 ∈ V
76fundmen 8956 . . 3 (Fun 𝑥 → dom 𝑥𝑥)
85, 7vtoclg 3509 . 2 (𝐹𝑉 → (Fun 𝐹 → dom 𝐹𝐹))
98imp 406 1 ((𝐹𝑉 ∧ Fun 𝐹) → dom 𝐹𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  dom cdm 5619  Fun wfun 6476  cen 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-en 8873
This theorem is referenced by:  fndmeng  8960
  Copyright terms: Public domain W3C validator