| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fundmeng | Structured version Visualization version GIF version | ||
| Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by NM, 17-Sep-2013.) |
| Ref | Expression |
|---|---|
| fundmeng | ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeq 6539 | . . . 4 ⊢ (𝑥 = 𝐹 → (Fun 𝑥 ↔ Fun 𝐹)) | |
| 2 | dmeq 5870 | . . . . 5 ⊢ (𝑥 = 𝐹 → dom 𝑥 = dom 𝐹) | |
| 3 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐹 → 𝑥 = 𝐹) | |
| 4 | 2, 3 | breq12d 5123 | . . . 4 ⊢ (𝑥 = 𝐹 → (dom 𝑥 ≈ 𝑥 ↔ dom 𝐹 ≈ 𝐹)) |
| 5 | 1, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐹 → ((Fun 𝑥 → dom 𝑥 ≈ 𝑥) ↔ (Fun 𝐹 → dom 𝐹 ≈ 𝐹))) |
| 6 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 7 | 6 | fundmen 9005 | . . 3 ⊢ (Fun 𝑥 → dom 𝑥 ≈ 𝑥) |
| 8 | 5, 7 | vtoclg 3523 | . 2 ⊢ (𝐹 ∈ 𝑉 → (Fun 𝐹 → dom 𝐹 ≈ 𝐹)) |
| 9 | 8 | imp 406 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ Fun 𝐹) → dom 𝐹 ≈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 dom cdm 5641 Fun wfun 6508 ≈ cen 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-en 8922 |
| This theorem is referenced by: fndmeng 9009 |
| Copyright terms: Public domain | W3C validator |