Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimassd | Structured version Visualization version GIF version |
Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funimassd.1 | ⊢ Ⅎ𝑥𝜑 |
funimassd.2 | ⊢ (𝜑 → Fun 𝐹) |
funimassd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
Ref | Expression |
---|---|
funimassd | ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimassd.2 | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
2 | fvelima 6835 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
3 | 1, 2 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
4 | funimassd.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
5 | nfv 1917 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐹 “ 𝐴) | |
6 | 4, 5 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) |
7 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
8 | id 22 | . . . . . . . . 9 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝐹‘𝑥) = 𝑦) | |
9 | 8 | eqcomd 2744 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 = (𝐹‘𝑥)) |
10 | 9 | 3ad2ant3 1134 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 = (𝐹‘𝑥)) |
11 | funimassd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
12 | 11 | 3adant3 1131 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → (𝐹‘𝑥) ∈ 𝐵) |
13 | 10, 12 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
14 | 13 | 3exp 1118 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
15 | 14 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
16 | 6, 7, 15 | rexlimd 3250 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
17 | 3, 16 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → 𝑦 ∈ 𝐵) |
18 | 17 | ssd 42630 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 “ cima 5592 Fun wfun 6427 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: funimaeq 42792 |
Copyright terms: Public domain | W3C validator |