![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimassd | Structured version Visualization version GIF version |
Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funimassd.1 | ⊢ Ⅎ𝑥𝜑 |
funimassd.2 | ⊢ (𝜑 → Fun 𝐹) |
funimassd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
Ref | Expression |
---|---|
funimassd | ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimassd.2 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
2 | fvelima 6956 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
3 | 1, 2 | sylan 578 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
4 | funimassd.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
5 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐹 “ 𝐴) | |
6 | 4, 5 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) |
7 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
8 | id 22 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝐹‘𝑥) = 𝑦) | |
9 | 8 | eqcomd 2736 | . . . . . . . . 9 ⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 = (𝐹‘𝑥)) |
10 | 9 | 3ad2ant3 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 = (𝐹‘𝑥)) |
11 | funimassd.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
12 | 11 | 3adant3 1130 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → (𝐹‘𝑥) ∈ 𝐵) |
13 | 10, 12 | eqeltrd 2831 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
14 | 13 | 3exp 1117 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
15 | 14 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
16 | 6, 7, 15 | rexlimd 3261 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
17 | 3, 16 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → 𝑦 ∈ 𝐵) |
18 | 17 | ex 411 | . 2 ⊢ (𝜑 → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵)) |
19 | 18 | ssrdv 3987 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 ∃wrex 3068 ⊆ wss 3947 “ cima 5678 Fun wfun 6536 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fv 6550 |
This theorem is referenced by: ig1pmindeg 32947 funimaeq 44248 |
Copyright terms: Public domain | W3C validator |