MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimassd Structured version   Visualization version   GIF version

Theorem funimassd 6888
Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
funimassd.1 𝑥𝜑
funimassd.2 (𝜑 → Fun 𝐹)
funimassd.3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
Assertion
Ref Expression
funimassd (𝜑 → (𝐹𝐴) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem funimassd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funimassd.2 . . . . 5 (𝜑 → Fun 𝐹)
2 fvelima 6887 . . . . 5 ((Fun 𝐹𝑦 ∈ (𝐹𝐴)) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
31, 2sylan 580 . . . 4 ((𝜑𝑦 ∈ (𝐹𝐴)) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
4 funimassd.1 . . . . . 6 𝑥𝜑
5 nfv 1915 . . . . . 6 𝑥 𝑦 ∈ (𝐹𝐴)
64, 5nfan 1900 . . . . 5 𝑥(𝜑𝑦 ∈ (𝐹𝐴))
7 nfv 1915 . . . . 5 𝑥 𝑦𝐵
8 id 22 . . . . . . . . . 10 ((𝐹𝑥) = 𝑦 → (𝐹𝑥) = 𝑦)
98eqcomd 2737 . . . . . . . . 9 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
1093ad2ant3 1135 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑦) → 𝑦 = (𝐹𝑥))
11 funimassd.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
12113adant3 1132 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ 𝐵)
1310, 12eqeltrd 2831 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐵)
14133exp 1119 . . . . . 6 (𝜑 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑦𝐵)))
1514adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝐹𝐴)) → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑦𝐵)))
166, 7, 15rexlimd 3239 . . . 4 ((𝜑𝑦 ∈ (𝐹𝐴)) → (∃𝑥𝐴 (𝐹𝑥) = 𝑦𝑦𝐵))
173, 16mpd 15 . . 3 ((𝜑𝑦 ∈ (𝐹𝐴)) → 𝑦𝐵)
1817ex 412 . 2 (𝜑 → (𝑦 ∈ (𝐹𝐴) → 𝑦𝐵))
1918ssrdv 3940 1 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wrex 3056  wss 3902  cima 5619  Fun wfun 6475  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  bdayiun  27858  ig1pmindeg  33557  esplylem  33582  esplyfv1  33585  exsslsb  33604  aks6d1c3  42155  aks6d1c2lem4  42159  aks6d1c2  42162  aks6d1c6lem2  42203  funimaeq  45282
  Copyright terms: Public domain W3C validator