Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funimassd Structured version   Visualization version   GIF version

Theorem funimassd 42770
Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
funimassd.1 𝑥𝜑
funimassd.2 (𝜑 → Fun 𝐹)
funimassd.3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
Assertion
Ref Expression
funimassd (𝜑 → (𝐹𝐴) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem funimassd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funimassd.2 . . . 4 (𝜑 → Fun 𝐹)
2 fvelima 6835 . . . 4 ((Fun 𝐹𝑦 ∈ (𝐹𝐴)) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
31, 2sylan 580 . . 3 ((𝜑𝑦 ∈ (𝐹𝐴)) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
4 funimassd.1 . . . . 5 𝑥𝜑
5 nfv 1917 . . . . 5 𝑥 𝑦 ∈ (𝐹𝐴)
64, 5nfan 1902 . . . 4 𝑥(𝜑𝑦 ∈ (𝐹𝐴))
7 nfv 1917 . . . 4 𝑥 𝑦𝐵
8 id 22 . . . . . . . . 9 ((𝐹𝑥) = 𝑦 → (𝐹𝑥) = 𝑦)
98eqcomd 2744 . . . . . . . 8 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
1093ad2ant3 1134 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑦) → 𝑦 = (𝐹𝑥))
11 funimassd.3 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
12113adant3 1131 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ 𝐵)
1310, 12eqeltrd 2839 . . . . . 6 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐵)
14133exp 1118 . . . . 5 (𝜑 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑦𝐵)))
1514adantr 481 . . . 4 ((𝜑𝑦 ∈ (𝐹𝐴)) → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑦𝐵)))
166, 7, 15rexlimd 3250 . . 3 ((𝜑𝑦 ∈ (𝐹𝐴)) → (∃𝑥𝐴 (𝐹𝑥) = 𝑦𝑦𝐵))
173, 16mpd 15 . 2 ((𝜑𝑦 ∈ (𝐹𝐴)) → 𝑦𝐵)
1817ssd 42630 1 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wnf 1786  wcel 2106  wrex 3065  wss 3887  cima 5592  Fun wfun 6427  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  funimaeq  42792
  Copyright terms: Public domain W3C validator