MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimassd Structured version   Visualization version   GIF version

Theorem funimassd 6894
Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
funimassd.1 𝑥𝜑
funimassd.2 (𝜑 → Fun 𝐹)
funimassd.3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
Assertion
Ref Expression
funimassd (𝜑 → (𝐹𝐴) ⊆ 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem funimassd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 funimassd.2 . . . . 5 (𝜑 → Fun 𝐹)
2 fvelima 6893 . . . . 5 ((Fun 𝐹𝑦 ∈ (𝐹𝐴)) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
31, 2sylan 580 . . . 4 ((𝜑𝑦 ∈ (𝐹𝐴)) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
4 funimassd.1 . . . . . 6 𝑥𝜑
5 nfv 1915 . . . . . 6 𝑥 𝑦 ∈ (𝐹𝐴)
64, 5nfan 1900 . . . . 5 𝑥(𝜑𝑦 ∈ (𝐹𝐴))
7 nfv 1915 . . . . 5 𝑥 𝑦𝐵
8 id 22 . . . . . . . . . 10 ((𝐹𝑥) = 𝑦 → (𝐹𝑥) = 𝑦)
98eqcomd 2739 . . . . . . . . 9 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
1093ad2ant3 1135 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑦) → 𝑦 = (𝐹𝑥))
11 funimassd.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
12113adant3 1132 . . . . . . . 8 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑦) → (𝐹𝑥) ∈ 𝐵)
1310, 12eqeltrd 2833 . . . . . . 7 ((𝜑𝑥𝐴 ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐵)
14133exp 1119 . . . . . 6 (𝜑 → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑦𝐵)))
1514adantr 480 . . . . 5 ((𝜑𝑦 ∈ (𝐹𝐴)) → (𝑥𝐴 → ((𝐹𝑥) = 𝑦𝑦𝐵)))
166, 7, 15rexlimd 3240 . . . 4 ((𝜑𝑦 ∈ (𝐹𝐴)) → (∃𝑥𝐴 (𝐹𝑥) = 𝑦𝑦𝐵))
173, 16mpd 15 . . 3 ((𝜑𝑦 ∈ (𝐹𝐴)) → 𝑦𝐵)
1817ex 412 . 2 (𝜑 → (𝑦 ∈ (𝐹𝐴) → 𝑦𝐵))
1918ssrdv 3936 1 (𝜑 → (𝐹𝐴) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2113  wrex 3057  wss 3898  cima 5622  Fun wfun 6480  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494
This theorem is referenced by:  bdayiun  27861  ig1pmindeg  33569  esplylem  33606  esplyfv1  33609  exsslsb  33630  aks6d1c3  42236  aks6d1c2lem4  42240  aks6d1c2  42243  aks6d1c6lem2  42284  funimaeq  45367
  Copyright terms: Public domain W3C validator