![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimassd | Structured version Visualization version GIF version |
Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funimassd.1 | ⊢ Ⅎ𝑥𝜑 |
funimassd.2 | ⊢ (𝜑 → Fun 𝐹) |
funimassd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
Ref | Expression |
---|---|
funimassd | ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimassd.2 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
2 | fvelima 6987 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
3 | 1, 2 | sylan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
4 | funimassd.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
5 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐹 “ 𝐴) | |
6 | 4, 5 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) |
7 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
8 | id 22 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝐹‘𝑥) = 𝑦) | |
9 | 8 | eqcomd 2746 | . . . . . . . . 9 ⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 = (𝐹‘𝑥)) |
10 | 9 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 = (𝐹‘𝑥)) |
11 | funimassd.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
12 | 11 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → (𝐹‘𝑥) ∈ 𝐵) |
13 | 10, 12 | eqeltrd 2844 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
14 | 13 | 3exp 1119 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
16 | 6, 7, 15 | rexlimd 3272 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
17 | 3, 16 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → 𝑦 ∈ 𝐵) |
18 | 17 | ex 412 | . 2 ⊢ (𝜑 → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵)) |
19 | 18 | ssrdv 4014 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 “ cima 5703 Fun wfun 6567 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: ig1pmindeg 33587 aks6d1c3 42080 aks6d1c2lem4 42084 aks6d1c2 42087 aks6d1c6lem2 42128 funimaeq 45155 |
Copyright terms: Public domain | W3C validator |