| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funimassd | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| funimassd.1 | ⊢ Ⅎ𝑥𝜑 |
| funimassd.2 | ⊢ (𝜑 → Fun 𝐹) |
| funimassd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| Ref | Expression |
|---|---|
| funimassd | ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funimassd.2 | . . . . 5 ⊢ (𝜑 → Fun 𝐹) | |
| 2 | fvelima 6887 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
| 3 | 1, 2 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
| 4 | funimassd.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐹 “ 𝐴) | |
| 6 | 4, 5 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) |
| 7 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
| 8 | id 22 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝐹‘𝑥) = 𝑦) | |
| 9 | 8 | eqcomd 2737 | . . . . . . . . 9 ⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 = (𝐹‘𝑥)) |
| 10 | 9 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 = (𝐹‘𝑥)) |
| 11 | funimassd.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
| 12 | 11 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → (𝐹‘𝑥) ∈ 𝐵) |
| 13 | 10, 12 | eqeltrd 2831 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
| 14 | 13 | 3exp 1119 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
| 15 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
| 16 | 6, 7, 15 | rexlimd 3239 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
| 17 | 3, 16 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → 𝑦 ∈ 𝐵) |
| 18 | 17 | ex 412 | . 2 ⊢ (𝜑 → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ∈ 𝐵)) |
| 19 | 18 | ssrdv 3940 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 “ cima 5619 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: bdayiun 27858 ig1pmindeg 33557 esplylem 33582 esplyfv1 33585 exsslsb 33604 aks6d1c3 42155 aks6d1c2lem4 42159 aks6d1c2 42162 aks6d1c6lem2 42203 funimaeq 45282 |
| Copyright terms: Public domain | W3C validator |