Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funimassd | Structured version Visualization version GIF version |
Description: Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
funimassd.1 | ⊢ Ⅎ𝑥𝜑 |
funimassd.2 | ⊢ (𝜑 → Fun 𝐹) |
funimassd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
Ref | Expression |
---|---|
funimassd | ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimassd.2 | . . . 4 ⊢ (𝜑 → Fun 𝐹) | |
2 | fvelima 6817 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
3 | 1, 2 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
4 | funimassd.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
5 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐹 “ 𝐴) | |
6 | 4, 5 | nfan 1903 | . . . 4 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) |
7 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | |
8 | id 22 | . . . . . . . . 9 ⊢ ((𝐹‘𝑥) = 𝑦 → (𝐹‘𝑥) = 𝑦) | |
9 | 8 | eqcomd 2744 | . . . . . . . 8 ⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 = (𝐹‘𝑥)) |
10 | 9 | 3ad2ant3 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 = (𝐹‘𝑥)) |
11 | funimassd.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | |
12 | 11 | 3adant3 1130 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → (𝐹‘𝑥) ∈ 𝐵) |
13 | 10, 12 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
14 | 13 | 3exp 1117 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵))) |
16 | 6, 7, 15 | rexlimd 3245 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐵)) |
17 | 3, 16 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → 𝑦 ∈ 𝐵) |
18 | 17 | ssd 42519 | 1 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 “ cima 5583 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: funimaeq 42681 |
Copyright terms: Public domain | W3C validator |