Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsvval Structured version   Visualization version   GIF version

Theorem evlsvval 41621
Description: Give a formula for the evaluation of a polynomial. (Contributed by SN, 9-Feb-2025.)
Hypotheses
Ref Expression
evlsvval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsvval.p 𝑃 = (𝐼 mPoly 𝑈)
evlsvval.b 𝐵 = (Base‘𝑃)
evlsvval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlsvval.k 𝐾 = (Base‘𝑆)
evlsvval.u 𝑈 = (𝑆s 𝑅)
evlsvval.t 𝑇 = (𝑆s (𝐾m 𝐼))
evlsvval.m 𝑀 = (mulGrp‘𝑇)
evlsvval.w = (.g𝑀)
evlsvval.x · = (.r𝑇)
evlsvval.f 𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))
evlsvval.g 𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))
evlsvval.i (𝜑𝐼𝑉)
evlsvval.s (𝜑𝑆 ∈ CRing)
evlsvval.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsvval.a (𝜑𝐴𝐵)
Assertion
Ref Expression
evlsvval (𝜑 → (𝑄𝐴) = (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝐴𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))
Distinct variable groups:   𝜑,𝑎,𝑥   𝜑,𝑏   𝑃,𝑏   𝐵,𝑏   𝐷,𝑏   𝐾,𝑎,𝑥   𝑈,𝑏,   𝑇,𝑏   𝑥,𝑇   𝑀,𝑏   ,𝑏   · ,𝑏   𝐹,𝑏   𝐺,𝑏   𝐼,𝑎,𝑥   𝐼,𝑏,   𝑆,𝑎,𝑥   𝑥,𝑅   𝐴,𝑏
Allowed substitution hints:   𝜑()   𝐴(𝑥,,𝑎)   𝐵(𝑥,,𝑎)   𝐷(𝑥,,𝑎)   𝑃(𝑥,,𝑎)   𝑄(𝑥,,𝑎,𝑏)   𝑅(,𝑎,𝑏)   𝑆(,𝑏)   𝑇(,𝑎)   · (𝑥,,𝑎)   𝑈(𝑥,𝑎)   (𝑥,,𝑎)   𝐹(𝑥,,𝑎)   𝐺(𝑥,,𝑎)   𝐾(,𝑏)   𝑀(𝑥,,𝑎)   𝑉(𝑥,,𝑎,𝑏)

Proof of Theorem evlsvval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6880 . . . . . 6 (𝑝 = 𝐴 → (𝑝𝑏) = (𝐴𝑏))
21fveq2d 6885 . . . . 5 (𝑝 = 𝐴 → (𝐹‘(𝑝𝑏)) = (𝐹‘(𝐴𝑏)))
32oveq1d 7416 . . . 4 (𝑝 = 𝐴 → ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺))) = ((𝐹‘(𝐴𝑏)) · (𝑀 Σg (𝑏f 𝐺))))
43mpteq2dv 5240 . . 3 (𝑝 = 𝐴 → (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺)))) = (𝑏𝐷 ↦ ((𝐹‘(𝐴𝑏)) · (𝑀 Σg (𝑏f 𝐺)))))
54oveq2d 7417 . 2 (𝑝 = 𝐴 → (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺))))) = (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝐴𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))
6 evlsvval.q . . 3 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
7 evlsvval.p . . 3 𝑃 = (𝐼 mPoly 𝑈)
8 evlsvval.b . . 3 𝐵 = (Base‘𝑃)
9 evlsvval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
10 evlsvval.k . . 3 𝐾 = (Base‘𝑆)
11 evlsvval.u . . 3 𝑈 = (𝑆s 𝑅)
12 evlsvval.t . . 3 𝑇 = (𝑆s (𝐾m 𝐼))
13 evlsvval.m . . 3 𝑀 = (mulGrp‘𝑇)
14 evlsvval.w . . 3 = (.g𝑀)
15 evlsvval.x . . 3 · = (.r𝑇)
16 eqid 2724 . . 3 (𝑝𝐵 ↦ (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺)))))) = (𝑝𝐵 ↦ (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))
17 evlsvval.f . . 3 𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))
18 evlsvval.g . . 3 𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))
19 evlsvval.i . . 3 (𝜑𝐼𝑉)
20 evlsvval.s . . 3 (𝜑𝑆 ∈ CRing)
21 evlsvval.r . . 3 (𝜑𝑅 ∈ (SubRing‘𝑆))
226, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21evlsval3 41620 . 2 (𝜑𝑄 = (𝑝𝐵 ↦ (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺)))))))
23 evlsvval.a . 2 (𝜑𝐴𝐵)
24 ovexd 7436 . 2 (𝜑 → (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝐴𝑏)) · (𝑀 Σg (𝑏f 𝐺))))) ∈ V)
255, 22, 23, 24fvmptd4 41546 1 (𝜑 → (𝑄𝐴) = (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝐴𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3424  Vcvv 3466  {csn 4620  cmpt 5221   × cxp 5664  ccnv 5665  cima 5669  cfv 6533  (class class class)co 7401  f cof 7661  m cmap 8816  Fincfn 8935  cn 12209  0cn0 12469  Basecbs 17143  s cress 17172  .rcmulr 17197   Σg cgsu 17385  s cpws 17391  .gcmg 18985  mulGrpcmgp 20029  CRingccrg 20129  SubRingcsubrg 20459   mPoly cmpl 21768   evalSub ces 21943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-ofr 7664  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-fz 13482  df-fzo 13625  df-seq 13964  df-hash 14288  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-mhm 18703  df-submnd 18704  df-grp 18856  df-minusg 18857  df-sbg 18858  df-mulg 18986  df-subg 19040  df-ghm 19129  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-srg 20082  df-ring 20130  df-cring 20131  df-rhm 20364  df-subrng 20436  df-subrg 20461  df-lmod 20698  df-lss 20769  df-lsp 20809  df-assa 21716  df-asp 21717  df-ascl 21718  df-psr 21771  df-mvr 21772  df-mpl 21773  df-evls 21945
This theorem is referenced by:  evlsvvval  41624  evlsevl  41632
  Copyright terms: Public domain W3C validator