| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsvval | Structured version Visualization version GIF version | ||
| Description: Give a formula for the evaluation of a polynomial. (Contributed by SN, 9-Feb-2025.) |
| Ref | Expression |
|---|---|
| evlsvval.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
| evlsvval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑈) |
| evlsvval.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlsvval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| evlsvval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evlsvval.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evlsvval.t | ⊢ 𝑇 = (𝑆 ↑s (𝐾 ↑m 𝐼)) |
| evlsvval.m | ⊢ 𝑀 = (mulGrp‘𝑇) |
| evlsvval.w | ⊢ ↑ = (.g‘𝑀) |
| evlsvval.x | ⊢ · = (.r‘𝑇) |
| evlsvval.f | ⊢ 𝐹 = (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) |
| evlsvval.g | ⊢ 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) |
| evlsvval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| evlsvval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evlsvval.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evlsvval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| evlsvval | ⊢ (𝜑 → (𝑄‘𝐴) = (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝐴‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6857 | . . . . . 6 ⊢ (𝑝 = 𝐴 → (𝑝‘𝑏) = (𝐴‘𝑏)) | |
| 2 | 1 | fveq2d 6862 | . . . . 5 ⊢ (𝑝 = 𝐴 → (𝐹‘(𝑝‘𝑏)) = (𝐹‘(𝐴‘𝑏))) |
| 3 | 2 | oveq1d 7402 | . . . 4 ⊢ (𝑝 = 𝐴 → ((𝐹‘(𝑝‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺))) = ((𝐹‘(𝐴‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺)))) |
| 4 | 3 | mpteq2dv 5201 | . . 3 ⊢ (𝑝 = 𝐴 → (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺)))) = (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝐴‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺))))) |
| 5 | 4 | oveq2d 7403 | . 2 ⊢ (𝑝 = 𝐴 → (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺))))) = (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝐴‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺)))))) |
| 6 | evlsvval.q | . . 3 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
| 7 | evlsvval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑈) | |
| 8 | evlsvval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 9 | evlsvval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 10 | evlsvval.k | . . 3 ⊢ 𝐾 = (Base‘𝑆) | |
| 11 | evlsvval.u | . . 3 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 12 | evlsvval.t | . . 3 ⊢ 𝑇 = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
| 13 | evlsvval.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑇) | |
| 14 | evlsvval.w | . . 3 ⊢ ↑ = (.g‘𝑀) | |
| 15 | evlsvval.x | . . 3 ⊢ · = (.r‘𝑇) | |
| 16 | eqid 2729 | . . 3 ⊢ (𝑝 ∈ 𝐵 ↦ (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺)))))) = (𝑝 ∈ 𝐵 ↦ (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺)))))) | |
| 17 | evlsvval.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) | |
| 18 | evlsvval.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) | |
| 19 | evlsvval.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 20 | evlsvval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 21 | evlsvval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 22 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | evlsval3 42547 | . 2 ⊢ (𝜑 → 𝑄 = (𝑝 ∈ 𝐵 ↦ (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺))))))) |
| 23 | evlsvval.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 24 | ovexd 7422 | . 2 ⊢ (𝜑 → (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝐴‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺))))) ∈ V) | |
| 25 | 5, 22, 23, 24 | fvmptd4 6992 | 1 ⊢ (𝜑 → (𝑄‘𝐴) = (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝐴‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 {csn 4589 ↦ cmpt 5188 × cxp 5636 ◡ccnv 5637 “ cima 5641 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ↑m cmap 8799 Fincfn 8918 ℕcn 12186 ℕ0cn0 12442 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 Σg cgsu 17403 ↑s cpws 17409 .gcmg 18999 mulGrpcmgp 20049 CRingccrg 20143 SubRingcsubrg 20478 mPoly cmpl 21815 evalSub ces 21979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-srg 20096 df-ring 20144 df-cring 20145 df-rhm 20381 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-assa 21762 df-asp 21763 df-ascl 21764 df-psr 21818 df-mvr 21819 df-mpl 21820 df-evls 21981 |
| This theorem is referenced by: evlsvvval 42551 evlsevl 42559 |
| Copyright terms: Public domain | W3C validator |