![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evlsvval | Structured version Visualization version GIF version |
Description: Give a formula for the evaluation of a polynomial. (Contributed by SN, 9-Feb-2025.) |
Ref | Expression |
---|---|
evlsvval.q | β’ π = ((πΌ evalSub π)βπ ) |
evlsvval.p | β’ π = (πΌ mPoly π) |
evlsvval.b | β’ π΅ = (Baseβπ) |
evlsvval.d | β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} |
evlsvval.k | β’ πΎ = (Baseβπ) |
evlsvval.u | β’ π = (π βΎs π ) |
evlsvval.t | β’ π = (π βs (πΎ βm πΌ)) |
evlsvval.m | β’ π = (mulGrpβπ) |
evlsvval.w | β’ β = (.gβπ) |
evlsvval.x | β’ Β· = (.rβπ) |
evlsvval.f | β’ πΉ = (π₯ β π β¦ ((πΎ βm πΌ) Γ {π₯})) |
evlsvval.g | β’ πΊ = (π₯ β πΌ β¦ (π β (πΎ βm πΌ) β¦ (πβπ₯))) |
evlsvval.i | β’ (π β πΌ β π) |
evlsvval.s | β’ (π β π β CRing) |
evlsvval.r | β’ (π β π β (SubRingβπ)) |
evlsvval.a | β’ (π β π΄ β π΅) |
Ref | Expression |
---|---|
evlsvval | β’ (π β (πβπ΄) = (π Ξ£g (π β π· β¦ ((πΉβ(π΄βπ)) Β· (π Ξ£g (π βf β πΊ)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6891 | . . . . . 6 β’ (π = π΄ β (πβπ) = (π΄βπ)) | |
2 | 1 | fveq2d 6896 | . . . . 5 β’ (π = π΄ β (πΉβ(πβπ)) = (πΉβ(π΄βπ))) |
3 | 2 | oveq1d 7424 | . . . 4 β’ (π = π΄ β ((πΉβ(πβπ)) Β· (π Ξ£g (π βf β πΊ))) = ((πΉβ(π΄βπ)) Β· (π Ξ£g (π βf β πΊ)))) |
4 | 3 | mpteq2dv 5251 | . . 3 β’ (π = π΄ β (π β π· β¦ ((πΉβ(πβπ)) Β· (π Ξ£g (π βf β πΊ)))) = (π β π· β¦ ((πΉβ(π΄βπ)) Β· (π Ξ£g (π βf β πΊ))))) |
5 | 4 | oveq2d 7425 | . 2 β’ (π = π΄ β (π Ξ£g (π β π· β¦ ((πΉβ(πβπ)) Β· (π Ξ£g (π βf β πΊ))))) = (π Ξ£g (π β π· β¦ ((πΉβ(π΄βπ)) Β· (π Ξ£g (π βf β πΊ)))))) |
6 | evlsvval.q | . . 3 β’ π = ((πΌ evalSub π)βπ ) | |
7 | evlsvval.p | . . 3 β’ π = (πΌ mPoly π) | |
8 | evlsvval.b | . . 3 β’ π΅ = (Baseβπ) | |
9 | evlsvval.d | . . 3 β’ π· = {β β (β0 βm πΌ) β£ (β‘β β β) β Fin} | |
10 | evlsvval.k | . . 3 β’ πΎ = (Baseβπ) | |
11 | evlsvval.u | . . 3 β’ π = (π βΎs π ) | |
12 | evlsvval.t | . . 3 β’ π = (π βs (πΎ βm πΌ)) | |
13 | evlsvval.m | . . 3 β’ π = (mulGrpβπ) | |
14 | evlsvval.w | . . 3 β’ β = (.gβπ) | |
15 | evlsvval.x | . . 3 β’ Β· = (.rβπ) | |
16 | eqid 2733 | . . 3 β’ (π β π΅ β¦ (π Ξ£g (π β π· β¦ ((πΉβ(πβπ)) Β· (π Ξ£g (π βf β πΊ)))))) = (π β π΅ β¦ (π Ξ£g (π β π· β¦ ((πΉβ(πβπ)) Β· (π Ξ£g (π βf β πΊ)))))) | |
17 | evlsvval.f | . . 3 β’ πΉ = (π₯ β π β¦ ((πΎ βm πΌ) Γ {π₯})) | |
18 | evlsvval.g | . . 3 β’ πΊ = (π₯ β πΌ β¦ (π β (πΎ βm πΌ) β¦ (πβπ₯))) | |
19 | evlsvval.i | . . 3 β’ (π β πΌ β π) | |
20 | evlsvval.s | . . 3 β’ (π β π β CRing) | |
21 | evlsvval.r | . . 3 β’ (π β π β (SubRingβπ)) | |
22 | 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | evlsval3 41131 | . 2 β’ (π β π = (π β π΅ β¦ (π Ξ£g (π β π· β¦ ((πΉβ(πβπ)) Β· (π Ξ£g (π βf β πΊ))))))) |
23 | evlsvval.a | . 2 β’ (π β π΄ β π΅) | |
24 | ovexd 7444 | . 2 β’ (π β (π Ξ£g (π β π· β¦ ((πΉβ(π΄βπ)) Β· (π Ξ£g (π βf β πΊ))))) β V) | |
25 | 5, 22, 23, 24 | fvmptd4 41053 | 1 β’ (π β (πβπ΄) = (π Ξ£g (π β π· β¦ ((πΉβ(π΄βπ)) Β· (π Ξ£g (π βf β πΊ)))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 {crab 3433 Vcvv 3475 {csn 4629 β¦ cmpt 5232 Γ cxp 5675 β‘ccnv 5676 β cima 5680 βcfv 6544 (class class class)co 7409 βf cof 7668 βm cmap 8820 Fincfn 8939 βcn 12212 β0cn0 12472 Basecbs 17144 βΎs cress 17173 .rcmulr 17198 Ξ£g cgsu 17386 βs cpws 17392 .gcmg 18950 mulGrpcmgp 19987 CRingccrg 20057 SubRingcsubrg 20315 mPoly cmpl 21459 evalSub ces 21633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-ofr 7671 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-pm 8823 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-fzo 13628 df-seq 13967 df-hash 14291 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-0g 17387 df-gsum 17388 df-prds 17393 df-pws 17395 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-submnd 18672 df-grp 18822 df-minusg 18823 df-sbg 18824 df-mulg 18951 df-subg 19003 df-ghm 19090 df-cntz 19181 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-srg 20010 df-ring 20058 df-cring 20059 df-rnghom 20251 df-subrg 20317 df-lmod 20473 df-lss 20543 df-lsp 20583 df-assa 21408 df-asp 21409 df-ascl 21410 df-psr 21462 df-mvr 21463 df-mpl 21464 df-evls 21635 |
This theorem is referenced by: evlsvvval 41135 evlsevl 41143 |
Copyright terms: Public domain | W3C validator |