Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrvval Structured version   Visualization version   GIF version

Theorem prjcrvval 42655
Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrvfval.h 𝐻 = ((0...𝑁) mHomP 𝐾)
prjcrvfval.e 𝐸 = ((0...𝑁) eval 𝐾)
prjcrvfval.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrvfval.0 0 = (0g𝐾)
prjcrvfval.n (𝜑𝑁 ∈ ℕ0)
prjcrvfval.k (𝜑𝐾 ∈ Field)
prjcrvval.f (𝜑𝐹 ran 𝐻)
Assertion
Ref Expression
prjcrvval (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }})
Distinct variable groups:   𝑁,𝑝   𝐾,𝑝   𝑃,𝑝   𝐹,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐸(𝑝)   𝐻(𝑝)   0 (𝑝)

Proof of Theorem prjcrvval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . . 5 (𝑓 = 𝐹 → (𝐸𝑓) = (𝐸𝐹))
21imaeq1d 6046 . . . 4 (𝑓 = 𝐹 → ((𝐸𝑓) “ 𝑝) = ((𝐸𝐹) “ 𝑝))
32eqeq1d 2737 . . 3 (𝑓 = 𝐹 → (((𝐸𝑓) “ 𝑝) = { 0 } ↔ ((𝐸𝐹) “ 𝑝) = { 0 }))
43rabbidv 3423 . 2 (𝑓 = 𝐹 → {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }} = {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }})
5 prjcrvfval.h . . 3 𝐻 = ((0...𝑁) mHomP 𝐾)
6 prjcrvfval.e . . 3 𝐸 = ((0...𝑁) eval 𝐾)
7 prjcrvfval.p . . 3 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
8 prjcrvfval.0 . . 3 0 = (0g𝐾)
9 prjcrvfval.n . . 3 (𝜑𝑁 ∈ ℕ0)
10 prjcrvfval.k . . 3 (𝜑𝐾 ∈ Field)
115, 6, 7, 8, 9, 10prjcrvfval 42654 . 2 (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
12 prjcrvval.f . 2 (𝜑𝐹 ran 𝐻)
137ovexi 7439 . . . 4 𝑃 ∈ V
1413rabex 5309 . . 3 {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }} ∈ V
1514a1i 11 . 2 (𝜑 → {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }} ∈ V)
164, 11, 12, 15fvmptd4 7010 1 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  {csn 4601   cuni 4883  ran crn 5655  cima 5657  cfv 6531  (class class class)co 7405  0cc0 11129  0cn0 12501  ...cfz 13524  0gc0g 17453  Fieldcfield 20690   eval cevl 22031   mHomP cmhp 22067  ℙ𝕣𝕠𝕛ncprjspn 42637  ℙ𝕣𝕠𝕛Crvcprjcrv 42652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-prjcrv 42653
This theorem is referenced by:  prjcrv0  42656
  Copyright terms: Public domain W3C validator