Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrvval Structured version   Visualization version   GIF version

Theorem prjcrvval 41952
Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrvfval.h 𝐻 = ((0...𝑁) mHomP 𝐾)
prjcrvfval.e 𝐸 = ((0...𝑁) eval 𝐾)
prjcrvfval.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrvfval.0 0 = (0g𝐾)
prjcrvfval.n (𝜑𝑁 ∈ ℕ0)
prjcrvfval.k (𝜑𝐾 ∈ Field)
prjcrvval.f (𝜑𝐹 ran 𝐻)
Assertion
Ref Expression
prjcrvval (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }})
Distinct variable groups:   𝑁,𝑝   𝐾,𝑝   𝑃,𝑝   𝐹,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐸(𝑝)   𝐻(𝑝)   0 (𝑝)

Proof of Theorem prjcrvval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6885 . . . . 5 (𝑓 = 𝐹 → (𝐸𝑓) = (𝐸𝐹))
21imaeq1d 6052 . . . 4 (𝑓 = 𝐹 → ((𝐸𝑓) “ 𝑝) = ((𝐸𝐹) “ 𝑝))
32eqeq1d 2728 . . 3 (𝑓 = 𝐹 → (((𝐸𝑓) “ 𝑝) = { 0 } ↔ ((𝐸𝐹) “ 𝑝) = { 0 }))
43rabbidv 3434 . 2 (𝑓 = 𝐹 → {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }} = {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }})
5 prjcrvfval.h . . 3 𝐻 = ((0...𝑁) mHomP 𝐾)
6 prjcrvfval.e . . 3 𝐸 = ((0...𝑁) eval 𝐾)
7 prjcrvfval.p . . 3 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
8 prjcrvfval.0 . . 3 0 = (0g𝐾)
9 prjcrvfval.n . . 3 (𝜑𝑁 ∈ ℕ0)
10 prjcrvfval.k . . 3 (𝜑𝐾 ∈ Field)
115, 6, 7, 8, 9, 10prjcrvfval 41951 . 2 (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
12 prjcrvval.f . 2 (𝜑𝐹 ran 𝐻)
137ovexi 7439 . . . 4 𝑃 ∈ V
1413rabex 5325 . . 3 {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }} ∈ V
1514a1i 11 . 2 (𝜑 → {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }} ∈ V)
164, 11, 12, 15fvmptd4 41614 1 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3426  Vcvv 3468  {csn 4623   cuni 4902  ran crn 5670  cima 5672  cfv 6537  (class class class)co 7405  0cc0 11112  0cn0 12476  ...cfz 13490  0gc0g 17394  Fieldcfield 20588   eval cevl 21976   mHomP cmhp 22014  ℙ𝕣𝕠𝕛ncprjspn 41934  ℙ𝕣𝕠𝕛Crvcprjcrv 41949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-prjcrv 41950
This theorem is referenced by:  prjcrv0  41953
  Copyright terms: Public domain W3C validator