| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjcrvval | Structured version Visualization version GIF version | ||
| Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| prjcrvfval.h | ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) |
| prjcrvfval.e | ⊢ 𝐸 = ((0...𝑁) eval 𝐾) |
| prjcrvfval.p | ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) |
| prjcrvfval.0 | ⊢ 0 = (0g‘𝐾) |
| prjcrvfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| prjcrvfval.k | ⊢ (𝜑 → 𝐾 ∈ Field) |
| prjcrvval.f | ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) |
| Ref | Expression |
|---|---|
| prjcrvval | ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐸‘𝑓) = (𝐸‘𝐹)) | |
| 2 | 1 | imaeq1d 6003 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝐸‘𝑓) “ 𝑝) = ((𝐸‘𝐹) “ 𝑝)) |
| 3 | 2 | eqeq1d 2733 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝐸‘𝑓) “ 𝑝) = { 0 } ↔ ((𝐸‘𝐹) “ 𝑝) = { 0 })) |
| 4 | 3 | rabbidv 3402 | . 2 ⊢ (𝑓 = 𝐹 → {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }} = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
| 5 | prjcrvfval.h | . . 3 ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) | |
| 6 | prjcrvfval.e | . . 3 ⊢ 𝐸 = ((0...𝑁) eval 𝐾) | |
| 7 | prjcrvfval.p | . . 3 ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) | |
| 8 | prjcrvfval.0 | . . 3 ⊢ 0 = (0g‘𝐾) | |
| 9 | prjcrvfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 10 | prjcrvfval.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 11 | 5, 6, 7, 8, 9, 10 | prjcrvfval 42664 | . 2 ⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) |
| 12 | prjcrvval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) | |
| 13 | 7 | ovexi 7375 | . . . 4 ⊢ 𝑃 ∈ V |
| 14 | 13 | rabex 5272 | . . 3 ⊢ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }} ∈ V |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }} ∈ V) |
| 16 | 4, 11, 12, 15 | fvmptd4 6948 | 1 ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 {csn 4571 ∪ cuni 4854 ran crn 5612 “ cima 5614 ‘cfv 6476 (class class class)co 7341 0cc0 11001 ℕ0cn0 12376 ...cfz 13402 0gc0g 17338 Fieldcfield 20640 eval cevl 22003 mHomP cmhp 22039 ℙ𝕣𝕠𝕛ncprjspn 42647 ℙ𝕣𝕠𝕛Crvcprjcrv 42662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-prjcrv 42663 |
| This theorem is referenced by: prjcrv0 42666 |
| Copyright terms: Public domain | W3C validator |