Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjcrvval Structured version   Visualization version   GIF version

Theorem prjcrvval 42587
Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.)
Hypotheses
Ref Expression
prjcrvfval.h 𝐻 = ((0...𝑁) mHomP 𝐾)
prjcrvfval.e 𝐸 = ((0...𝑁) eval 𝐾)
prjcrvfval.p 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
prjcrvfval.0 0 = (0g𝐾)
prjcrvfval.n (𝜑𝑁 ∈ ℕ0)
prjcrvfval.k (𝜑𝐾 ∈ Field)
prjcrvval.f (𝜑𝐹 ran 𝐻)
Assertion
Ref Expression
prjcrvval (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }})
Distinct variable groups:   𝑁,𝑝   𝐾,𝑝   𝑃,𝑝   𝐹,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐸(𝑝)   𝐻(𝑝)   0 (𝑝)

Proof of Theorem prjcrvval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . . 5 (𝑓 = 𝐹 → (𝐸𝑓) = (𝐸𝐹))
21imaeq1d 6088 . . . 4 (𝑓 = 𝐹 → ((𝐸𝑓) “ 𝑝) = ((𝐸𝐹) “ 𝑝))
32eqeq1d 2742 . . 3 (𝑓 = 𝐹 → (((𝐸𝑓) “ 𝑝) = { 0 } ↔ ((𝐸𝐹) “ 𝑝) = { 0 }))
43rabbidv 3451 . 2 (𝑓 = 𝐹 → {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }} = {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }})
5 prjcrvfval.h . . 3 𝐻 = ((0...𝑁) mHomP 𝐾)
6 prjcrvfval.e . . 3 𝐸 = ((0...𝑁) eval 𝐾)
7 prjcrvfval.p . . 3 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾)
8 prjcrvfval.0 . . 3 0 = (0g𝐾)
9 prjcrvfval.n . . 3 (𝜑𝑁 ∈ ℕ0)
10 prjcrvfval.k . . 3 (𝜑𝐾 ∈ Field)
115, 6, 7, 8, 9, 10prjcrvfval 42586 . 2 (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ran 𝐻 ↦ {𝑝𝑃 ∣ ((𝐸𝑓) “ 𝑝) = { 0 }}))
12 prjcrvval.f . 2 (𝜑𝐹 ran 𝐻)
137ovexi 7482 . . . 4 𝑃 ∈ V
1413rabex 5357 . . 3 {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }} ∈ V
1514a1i 11 . 2 (𝜑 → {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }} ∈ V)
164, 11, 12, 15fvmptd4 7053 1 (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝𝑃 ∣ ((𝐸𝐹) “ 𝑝) = { 0 }})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  {csn 4648   cuni 4931  ran crn 5701  cima 5703  cfv 6573  (class class class)co 7448  0cc0 11184  0cn0 12553  ...cfz 13567  0gc0g 17499  Fieldcfield 20752   eval cevl 22120   mHomP cmhp 22156  ℙ𝕣𝕠𝕛ncprjspn 42569  ℙ𝕣𝕠𝕛Crvcprjcrv 42584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-prjcrv 42585
This theorem is referenced by:  prjcrv0  42588
  Copyright terms: Public domain W3C validator