![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjcrvval | Structured version Visualization version GIF version |
Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
prjcrvfval.h | ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) |
prjcrvfval.e | ⊢ 𝐸 = ((0...𝑁) eval 𝐾) |
prjcrvfval.p | ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) |
prjcrvfval.0 | ⊢ 0 = (0g‘𝐾) |
prjcrvfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
prjcrvfval.k | ⊢ (𝜑 → 𝐾 ∈ Field) |
prjcrvval.f | ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) |
Ref | Expression |
---|---|
prjcrvval | ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6885 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐸‘𝑓) = (𝐸‘𝐹)) | |
2 | 1 | imaeq1d 6052 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝐸‘𝑓) “ 𝑝) = ((𝐸‘𝐹) “ 𝑝)) |
3 | 2 | eqeq1d 2728 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝐸‘𝑓) “ 𝑝) = { 0 } ↔ ((𝐸‘𝐹) “ 𝑝) = { 0 })) |
4 | 3 | rabbidv 3434 | . 2 ⊢ (𝑓 = 𝐹 → {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }} = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
5 | prjcrvfval.h | . . 3 ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) | |
6 | prjcrvfval.e | . . 3 ⊢ 𝐸 = ((0...𝑁) eval 𝐾) | |
7 | prjcrvfval.p | . . 3 ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) | |
8 | prjcrvfval.0 | . . 3 ⊢ 0 = (0g‘𝐾) | |
9 | prjcrvfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | prjcrvfval.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Field) | |
11 | 5, 6, 7, 8, 9, 10 | prjcrvfval 41951 | . 2 ⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) |
12 | prjcrvval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) | |
13 | 7 | ovexi 7439 | . . . 4 ⊢ 𝑃 ∈ V |
14 | 13 | rabex 5325 | . . 3 ⊢ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }} ∈ V |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }} ∈ V) |
16 | 4, 11, 12, 15 | fvmptd4 41614 | 1 ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3426 Vcvv 3468 {csn 4623 ∪ cuni 4902 ran crn 5670 “ cima 5672 ‘cfv 6537 (class class class)co 7405 0cc0 11112 ℕ0cn0 12476 ...cfz 13490 0gc0g 17394 Fieldcfield 20588 eval cevl 21976 mHomP cmhp 22014 ℙ𝕣𝕠𝕛ncprjspn 41934 ℙ𝕣𝕠𝕛Crvcprjcrv 41949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-prjcrv 41950 |
This theorem is referenced by: prjcrv0 41953 |
Copyright terms: Public domain | W3C validator |