Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjcrvval | Structured version Visualization version GIF version |
Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
prjcrvfval.h | ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) |
prjcrvfval.e | ⊢ 𝐸 = ((0...𝑁) eval 𝐾) |
prjcrvfval.p | ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) |
prjcrvfval.0 | ⊢ 0 = (0g‘𝐾) |
prjcrvfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
prjcrvfval.k | ⊢ (𝜑 → 𝐾 ∈ Field) |
prjcrvval.f | ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) |
Ref | Expression |
---|---|
prjcrvval | ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6804 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐸‘𝑓) = (𝐸‘𝐹)) | |
2 | 1 | imaeq1d 5978 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝐸‘𝑓) “ 𝑝) = ((𝐸‘𝐹) “ 𝑝)) |
3 | 2 | eqeq1d 2738 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝐸‘𝑓) “ 𝑝) = { 0 } ↔ ((𝐸‘𝐹) “ 𝑝) = { 0 })) |
4 | 3 | rabbidv 3421 | . 2 ⊢ (𝑓 = 𝐹 → {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }} = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
5 | prjcrvfval.h | . . 3 ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) | |
6 | prjcrvfval.e | . . 3 ⊢ 𝐸 = ((0...𝑁) eval 𝐾) | |
7 | prjcrvfval.p | . . 3 ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) | |
8 | prjcrvfval.0 | . . 3 ⊢ 0 = (0g‘𝐾) | |
9 | prjcrvfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | prjcrvfval.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Field) | |
11 | 5, 6, 7, 8, 9, 10 | prjcrvfval 40663 | . 2 ⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) |
12 | prjcrvval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) | |
13 | 7 | ovexi 7341 | . . . 4 ⊢ 𝑃 ∈ V |
14 | 13 | rabex 5265 | . . 3 ⊢ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }} ∈ V |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }} ∈ V) |
16 | 4, 11, 12, 15 | fvmptd4 40405 | 1 ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 {crab 3303 Vcvv 3437 {csn 4565 ∪ cuni 4844 ran crn 5601 “ cima 5603 ‘cfv 6458 (class class class)co 7307 0cc0 10921 ℕ0cn0 12283 ...cfz 13289 0gc0g 17199 Fieldcfield 20041 eval cevl 21330 mHomP cmhp 21368 ℙ𝕣𝕠𝕛ncprjspn 40648 ℙ𝕣𝕠𝕛Crvcprjcrv 40661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-prjcrv 40662 |
This theorem is referenced by: prjcrv0 40665 |
Copyright terms: Public domain | W3C validator |