| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjcrvval | Structured version Visualization version GIF version | ||
| Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| prjcrvfval.h | ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) |
| prjcrvfval.e | ⊢ 𝐸 = ((0...𝑁) eval 𝐾) |
| prjcrvfval.p | ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) |
| prjcrvfval.0 | ⊢ 0 = (0g‘𝐾) |
| prjcrvfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| prjcrvfval.k | ⊢ (𝜑 → 𝐾 ∈ Field) |
| prjcrvval.f | ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) |
| Ref | Expression |
|---|---|
| prjcrvval | ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6840 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐸‘𝑓) = (𝐸‘𝐹)) | |
| 2 | 1 | imaeq1d 6019 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝐸‘𝑓) “ 𝑝) = ((𝐸‘𝐹) “ 𝑝)) |
| 3 | 2 | eqeq1d 2731 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝐸‘𝑓) “ 𝑝) = { 0 } ↔ ((𝐸‘𝐹) “ 𝑝) = { 0 })) |
| 4 | 3 | rabbidv 3410 | . 2 ⊢ (𝑓 = 𝐹 → {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }} = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
| 5 | prjcrvfval.h | . . 3 ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) | |
| 6 | prjcrvfval.e | . . 3 ⊢ 𝐸 = ((0...𝑁) eval 𝐾) | |
| 7 | prjcrvfval.p | . . 3 ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) | |
| 8 | prjcrvfval.0 | . . 3 ⊢ 0 = (0g‘𝐾) | |
| 9 | prjcrvfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 10 | prjcrvfval.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Field) | |
| 11 | 5, 6, 7, 8, 9, 10 | prjcrvfval 42592 | . 2 ⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) |
| 12 | prjcrvval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) | |
| 13 | 7 | ovexi 7403 | . . . 4 ⊢ 𝑃 ∈ V |
| 14 | 13 | rabex 5289 | . . 3 ⊢ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }} ∈ V |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }} ∈ V) |
| 16 | 4, 11, 12, 15 | fvmptd4 6974 | 1 ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 Vcvv 3444 {csn 4585 ∪ cuni 4867 ran crn 5632 “ cima 5634 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ℕ0cn0 12418 ...cfz 13444 0gc0g 17378 Fieldcfield 20615 eval cevl 21956 mHomP cmhp 21992 ℙ𝕣𝕠𝕛ncprjspn 42575 ℙ𝕣𝕠𝕛Crvcprjcrv 42590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-prjcrv 42591 |
| This theorem is referenced by: prjcrv0 42594 |
| Copyright terms: Public domain | W3C validator |