![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjcrvval | Structured version Visualization version GIF version |
Description: Value of the projective curve function. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
prjcrvfval.h | ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) |
prjcrvfval.e | ⊢ 𝐸 = ((0...𝑁) eval 𝐾) |
prjcrvfval.p | ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) |
prjcrvfval.0 | ⊢ 0 = (0g‘𝐾) |
prjcrvfval.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
prjcrvfval.k | ⊢ (𝜑 → 𝐾 ∈ Field) |
prjcrvval.f | ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) |
Ref | Expression |
---|---|
prjcrvval | ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝐸‘𝑓) = (𝐸‘𝐹)) | |
2 | 1 | imaeq1d 6088 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝐸‘𝑓) “ 𝑝) = ((𝐸‘𝐹) “ 𝑝)) |
3 | 2 | eqeq1d 2742 | . . 3 ⊢ (𝑓 = 𝐹 → (((𝐸‘𝑓) “ 𝑝) = { 0 } ↔ ((𝐸‘𝐹) “ 𝑝) = { 0 })) |
4 | 3 | rabbidv 3451 | . 2 ⊢ (𝑓 = 𝐹 → {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }} = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
5 | prjcrvfval.h | . . 3 ⊢ 𝐻 = ((0...𝑁) mHomP 𝐾) | |
6 | prjcrvfval.e | . . 3 ⊢ 𝐸 = ((0...𝑁) eval 𝐾) | |
7 | prjcrvfval.p | . . 3 ⊢ 𝑃 = (𝑁ℙ𝕣𝕠𝕛n𝐾) | |
8 | prjcrvfval.0 | . . 3 ⊢ 0 = (0g‘𝐾) | |
9 | prjcrvfval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | prjcrvfval.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ Field) | |
11 | 5, 6, 7, 8, 9, 10 | prjcrvfval 42586 | . 2 ⊢ (𝜑 → (𝑁ℙ𝕣𝕠𝕛Crv𝐾) = (𝑓 ∈ ∪ ran 𝐻 ↦ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝑓) “ 𝑝) = { 0 }})) |
12 | prjcrvval.f | . 2 ⊢ (𝜑 → 𝐹 ∈ ∪ ran 𝐻) | |
13 | 7 | ovexi 7482 | . . . 4 ⊢ 𝑃 ∈ V |
14 | 13 | rabex 5357 | . . 3 ⊢ {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }} ∈ V |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }} ∈ V) |
16 | 4, 11, 12, 15 | fvmptd4 7053 | 1 ⊢ (𝜑 → ((𝑁ℙ𝕣𝕠𝕛Crv𝐾)‘𝐹) = {𝑝 ∈ 𝑃 ∣ ((𝐸‘𝐹) “ 𝑝) = { 0 }}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 {csn 4648 ∪ cuni 4931 ran crn 5701 “ cima 5703 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℕ0cn0 12553 ...cfz 13567 0gc0g 17499 Fieldcfield 20752 eval cevl 22120 mHomP cmhp 22156 ℙ𝕣𝕠𝕛ncprjspn 42569 ℙ𝕣𝕠𝕛Crvcprjcrv 42584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-prjcrv 42585 |
This theorem is referenced by: prjcrv0 42588 |
Copyright terms: Public domain | W3C validator |