| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptn | Structured version Visualization version GIF version | ||
| Description: This somewhat non-intuitive theorem tells us the value of its function is the empty set when the class 𝐶 it would otherwise map to is a proper class. This is a technical lemma that can help eliminate redundant sethood antecedents otherwise required by fvmptg 6927. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 9-Sep-2013.) |
| Ref | Expression |
|---|---|
| fvmptn.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
| fvmptn.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fvmptn | ⊢ (¬ 𝐶 ∈ V → (𝐹‘𝐷) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐷 | |
| 2 | nfcv 2894 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 3 | fvmptn.1 | . 2 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
| 4 | fvmptn.2 | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 1, 2, 3, 4 | fvmptnf 6951 | 1 ⊢ (¬ 𝐶 ∈ V → (𝐹‘𝐷) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ↦ cmpt 5172 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: rdg0n 8353 |
| Copyright terms: Public domain | W3C validator |