MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvmptn Structured version   Visualization version   GIF version

Theorem fvmptn 6959
Description: This somewhat non-intuitive theorem tells us the value of its function is the empty set when the class 𝐶 it would otherwise map to is a proper class. This is a technical lemma that can help eliminate redundant sethood antecedents otherwise required by fvmptg 6932. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 9-Sep-2013.)
Hypotheses
Ref Expression
fvmptn.1 (𝑥 = 𝐷𝐵 = 𝐶)
fvmptn.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fvmptn 𝐶 ∈ V → (𝐹𝐷) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fvmptn
StepHypRef Expression
1 nfcv 2891 . 2 𝑥𝐷
2 nfcv 2891 . 2 𝑥𝐶
3 fvmptn.1 . 2 (𝑥 = 𝐷𝐵 = 𝐶)
4 fvmptn.2 . 2 𝐹 = (𝑥𝐴𝐵)
51, 2, 3, 4fvmptnf 6956 1 𝐶 ∈ V → (𝐹𝐷) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  cmpt 5176  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494
This theorem is referenced by:  rdg0n  8363
  Copyright terms: Public domain W3C validator