![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvmptdv2 | Structured version Visualization version GIF version |
Description: Alternate deduction version of fvmpt 6988, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
Ref | Expression |
---|---|
fvmptdv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
fvmptdv2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
fvmptdv2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
fvmptdv2 | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2725 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
2 | fvmptdv2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
3 | fvmptdv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
4 | 3 | elexd 3487 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
5 | isset 3479 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
6 | 4, 5 | sylib 217 | . . . 4 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
7 | fvmptdv2.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
8 | 7 | elexd 3487 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
9 | 2, 8 | eqeltrrd 2826 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 ∈ V) |
10 | 6, 9 | exlimddv 1930 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
11 | 1, 2, 3, 10 | fvmptd 6995 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐶) |
12 | fveq1 6880 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) | |
13 | 12 | eqeq1d 2726 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → ((𝐹‘𝐴) = 𝐶 ↔ ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐶)) |
14 | 11, 13 | syl5ibrcom 246 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3466 ↦ cmpt 5221 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-iota 6485 df-fun 6535 df-fv 6541 |
This theorem is referenced by: curf12 18181 curf2 18183 yonedalem4b 18230 |
Copyright terms: Public domain | W3C validator |