| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptdv2 | Structured version Visualization version GIF version | ||
| Description: Alternate deduction version of fvmpt 7016, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| fvmptdv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptdv2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
| fvmptdv2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| fvmptdv2 | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2738 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
| 2 | fvmptdv2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 3 | fvmptdv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 4 | 3 | elexd 3504 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 5 | isset 3494 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
| 7 | fvmptdv2.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
| 8 | 7 | elexd 3504 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
| 9 | 2, 8 | eqeltrrd 2842 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 ∈ V) |
| 10 | 6, 9 | exlimddv 1935 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 11 | 1, 2, 3, 10 | fvmptd 7023 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐶) |
| 12 | fveq1 6905 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) | |
| 13 | 12 | eqeq1d 2739 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → ((𝐹‘𝐴) = 𝐶 ↔ ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐶)) |
| 14 | 11, 13 | syl5ibrcom 247 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 ↦ cmpt 5225 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 |
| This theorem is referenced by: curf12 18272 curf2 18274 yonedalem4b 18321 |
| Copyright terms: Public domain | W3C validator |