| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvmptdv2 | Structured version Visualization version GIF version | ||
| Description: Alternate deduction version of fvmpt 6929, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| fvmptdv2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptdv2.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
| fvmptdv2.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| fvmptdv2 | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵)) | |
| 2 | fvmptdv2.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 = 𝐶) | |
| 3 | fvmptdv2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 4 | 3 | elexd 3460 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ V) |
| 5 | isset 3450 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 6 | 4, 5 | sylib 218 | . . . 4 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
| 7 | fvmptdv2.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
| 8 | 7 | elexd 3460 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) |
| 9 | 2, 8 | eqeltrrd 2832 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 ∈ V) |
| 10 | 6, 9 | exlimddv 1936 | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) |
| 11 | 1, 2, 3, 10 | fvmptd 6936 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐶) |
| 12 | fveq1 6821 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) | |
| 13 | 12 | eqeq1d 2733 | . 2 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → ((𝐹‘𝐴) = 𝐶 ↔ ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐶)) |
| 14 | 11, 13 | syl5ibrcom 247 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5172 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: curf12 18130 curf2 18132 yonedalem4b 18179 |
| Copyright terms: Public domain | W3C validator |