MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf12 Structured version   Visualization version   GIF version

Theorem curf12 18116
Description: The partially evaluated curry functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
curf11.y (𝜑𝑌𝐵)
curf12.j 𝐽 = (Hom ‘𝐷)
curf12.1 1 = (Id‘𝐶)
curf12.y (𝜑𝑍𝐵)
curf12.g (𝜑𝐻 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
curf12 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻))

Proof of Theorem curf12
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curfval.a . . . 4 𝐴 = (Base‘𝐶)
3 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curfval.b . . . 4 𝐵 = (Base‘𝐷)
7 curf1.x . . . 4 (𝜑𝑋𝐴)
8 curf1.k . . . 4 𝐾 = ((1st𝐺)‘𝑋)
9 curf12.j . . . 4 𝐽 = (Hom ‘𝐷)
10 curf12.1 . . . 4 1 = (Id‘𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 18114 . . 3 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
126fvexi 6856 . . . . 5 𝐵 ∈ V
1312mptex 7173 . . . 4 (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)) ∈ V
1412, 12mpoex 8012 . . . 4 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) ∈ V
1513, 14op2ndd 7932 . . 3 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1611, 15syl 17 . 2 (𝜑 → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
17 curf11.y . . 3 (𝜑𝑌𝐵)
18 curf12.y . . . 4 (𝜑𝑍𝐵)
1918adantr 481 . . 3 ((𝜑𝑦 = 𝑌) → 𝑍𝐵)
20 ovex 7390 . . . . 5 (𝑦𝐽𝑧) ∈ V
2120mptex 7173 . . . 4 (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V
2221a1i 11 . . 3 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V)
23 curf12.g . . . . . 6 (𝜑𝐻 ∈ (𝑌𝐽𝑍))
2423adantr 481 . . . . 5 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝐻 ∈ (𝑌𝐽𝑍))
25 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝑦 = 𝑌)
26 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝑧 = 𝑍)
2725, 26oveq12d 7375 . . . . 5 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → (𝑦𝐽𝑧) = (𝑌𝐽𝑍))
2824, 27eleqtrrd 2841 . . . 4 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝐻 ∈ (𝑦𝐽𝑧))
29 ovexd 7392 . . . 4 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) ∈ V)
30 simplrl 775 . . . . . . 7 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑦 = 𝑌)
3130opeq2d 4837 . . . . . 6 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ⟨𝑋, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
32 simplrr 776 . . . . . . 7 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑧 = 𝑍)
3332opeq2d 4837 . . . . . 6 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ⟨𝑋, 𝑧⟩ = ⟨𝑋, 𝑍⟩)
3431, 33oveq12d 7375 . . . . 5 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩) = (⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩))
35 eqidd 2737 . . . . 5 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ( 1𝑋) = ( 1𝑋))
36 simpr 485 . . . . 5 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑔 = 𝐻)
3734, 35, 36oveq123d 7378 . . . 4 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻))
3828, 29, 37fvmptdv2 6966 . . 3 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → ((𝑌(2nd𝐾)𝑍) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻)))
3917, 19, 22, 38ovmpodv 7512 . 2 (𝜑 → ((2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻)))
4016, 39mpd 15 1 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cop 4592  cmpt 5188  cfv 6496  (class class class)co 7357  cmpo 7359  1st c1st 7919  2nd c2nd 7920  Basecbs 17083  Hom chom 17144  Catccat 17544  Idccid 17545   Func cfunc 17740   ×c cxpc 18056   curryF ccurf 18099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-curf 18103
This theorem is referenced by:  curf1cl  18117  curf2cl  18120  uncfcurf  18128  diag12  18133  yon12  18154
  Copyright terms: Public domain W3C validator