MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf12 Structured version   Visualization version   GIF version

Theorem curf12 17945
Description: The partially evaluated curry functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
curf11.y (𝜑𝑌𝐵)
curf12.j 𝐽 = (Hom ‘𝐷)
curf12.1 1 = (Id‘𝐶)
curf12.y (𝜑𝑍𝐵)
curf12.g (𝜑𝐻 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
curf12 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻))

Proof of Theorem curf12
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curfval.a . . . 4 𝐴 = (Base‘𝐶)
3 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curfval.b . . . 4 𝐵 = (Base‘𝐷)
7 curf1.x . . . 4 (𝜑𝑋𝐴)
8 curf1.k . . . 4 𝐾 = ((1st𝐺)‘𝑋)
9 curf12.j . . . 4 𝐽 = (Hom ‘𝐷)
10 curf12.1 . . . 4 1 = (Id‘𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 17943 . . 3 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
126fvexi 6788 . . . . 5 𝐵 ∈ V
1312mptex 7099 . . . 4 (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)) ∈ V
1412, 12mpoex 7920 . . . 4 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) ∈ V
1513, 14op2ndd 7842 . . 3 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1611, 15syl 17 . 2 (𝜑 → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
17 curf11.y . . 3 (𝜑𝑌𝐵)
18 curf12.y . . . 4 (𝜑𝑍𝐵)
1918adantr 481 . . 3 ((𝜑𝑦 = 𝑌) → 𝑍𝐵)
20 ovex 7308 . . . . 5 (𝑦𝐽𝑧) ∈ V
2120mptex 7099 . . . 4 (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V
2221a1i 11 . . 3 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V)
23 curf12.g . . . . . 6 (𝜑𝐻 ∈ (𝑌𝐽𝑍))
2423adantr 481 . . . . 5 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝐻 ∈ (𝑌𝐽𝑍))
25 simprl 768 . . . . . 6 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝑦 = 𝑌)
26 simprr 770 . . . . . 6 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝑧 = 𝑍)
2725, 26oveq12d 7293 . . . . 5 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → (𝑦𝐽𝑧) = (𝑌𝐽𝑍))
2824, 27eleqtrrd 2842 . . . 4 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝐻 ∈ (𝑦𝐽𝑧))
29 ovexd 7310 . . . 4 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) ∈ V)
30 simplrl 774 . . . . . . 7 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑦 = 𝑌)
3130opeq2d 4811 . . . . . 6 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ⟨𝑋, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
32 simplrr 775 . . . . . . 7 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑧 = 𝑍)
3332opeq2d 4811 . . . . . 6 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ⟨𝑋, 𝑧⟩ = ⟨𝑋, 𝑍⟩)
3431, 33oveq12d 7293 . . . . 5 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩) = (⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩))
35 eqidd 2739 . . . . 5 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ( 1𝑋) = ( 1𝑋))
36 simpr 485 . . . . 5 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑔 = 𝐻)
3734, 35, 36oveq123d 7296 . . . 4 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻))
3828, 29, 37fvmptdv2 6893 . . 3 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → ((𝑌(2nd𝐾)𝑍) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻)))
3917, 19, 22, 38ovmpodv 7430 . 2 (𝜑 → ((2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻)))
4016, 39mpd 15 1 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567  cmpt 5157  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  Basecbs 16912  Hom chom 16973  Catccat 17373  Idccid 17374   Func cfunc 17569   ×c cxpc 17885   curryF ccurf 17928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-curf 17932
This theorem is referenced by:  curf1cl  17946  curf2cl  17949  uncfcurf  17957  diag12  17962  yon12  17983
  Copyright terms: Public domain W3C validator