MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf12 Structured version   Visualization version   GIF version

Theorem curf12 18247
Description: The partially evaluated curry functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
curf11.y (𝜑𝑌𝐵)
curf12.j 𝐽 = (Hom ‘𝐷)
curf12.1 1 = (Id‘𝐶)
curf12.y (𝜑𝑍𝐵)
curf12.g (𝜑𝐻 ∈ (𝑌𝐽𝑍))
Assertion
Ref Expression
curf12 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻))

Proof of Theorem curf12
Dummy variables 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curfval.a . . . 4 𝐴 = (Base‘𝐶)
3 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curfval.b . . . 4 𝐵 = (Base‘𝐷)
7 curf1.x . . . 4 (𝜑𝑋𝐴)
8 curf1.k . . . 4 𝐾 = ((1st𝐺)‘𝑋)
9 curf12.j . . . 4 𝐽 = (Hom ‘𝐷)
10 curf12.1 . . . 4 1 = (Id‘𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 18245 . . 3 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
126fvexi 6907 . . . . 5 𝐵 ∈ V
1312mptex 7232 . . . 4 (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)) ∈ V
1412, 12mpoex 8085 . . . 4 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) ∈ V
1513, 14op2ndd 8006 . . 3 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1611, 15syl 17 . 2 (𝜑 → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
17 curf11.y . . 3 (𝜑𝑌𝐵)
18 curf12.y . . . 4 (𝜑𝑍𝐵)
1918adantr 479 . . 3 ((𝜑𝑦 = 𝑌) → 𝑍𝐵)
20 ovex 7449 . . . . 5 (𝑦𝐽𝑧) ∈ V
2120mptex 7232 . . . 4 (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V
2221a1i 11 . . 3 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V)
23 curf12.g . . . . . 6 (𝜑𝐻 ∈ (𝑌𝐽𝑍))
2423adantr 479 . . . . 5 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝐻 ∈ (𝑌𝐽𝑍))
25 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝑦 = 𝑌)
26 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝑧 = 𝑍)
2725, 26oveq12d 7434 . . . . 5 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → (𝑦𝐽𝑧) = (𝑌𝐽𝑍))
2824, 27eleqtrrd 2829 . . . 4 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → 𝐻 ∈ (𝑦𝐽𝑧))
29 ovexd 7451 . . . 4 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) ∈ V)
30 simplrl 775 . . . . . . 7 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑦 = 𝑌)
3130opeq2d 4878 . . . . . 6 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ⟨𝑋, 𝑦⟩ = ⟨𝑋, 𝑌⟩)
32 simplrr 776 . . . . . . 7 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑧 = 𝑍)
3332opeq2d 4878 . . . . . 6 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ⟨𝑋, 𝑧⟩ = ⟨𝑋, 𝑍⟩)
3431, 33oveq12d 7434 . . . . 5 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩) = (⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩))
35 eqidd 2727 . . . . 5 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ( 1𝑋) = ( 1𝑋))
36 simpr 483 . . . . 5 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑔 = 𝐻)
3734, 35, 36oveq123d 7437 . . . 4 (((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻))
3828, 29, 37fvmptdv2 7019 . . 3 ((𝜑 ∧ (𝑦 = 𝑌𝑧 = 𝑍)) → ((𝑌(2nd𝐾)𝑍) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻)))
3917, 19, 22, 38ovmpodv 7575 . 2 (𝜑 → ((2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻)))
4016, 39mpd 15 1 (𝜑 → ((𝑌(2nd𝐾)𝑍)‘𝐻) = (( 1𝑋)(⟨𝑋, 𝑌⟩(2nd𝐹)⟨𝑋, 𝑍⟩)𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cop 4629  cmpt 5228  cfv 6546  (class class class)co 7416  cmpo 7418  1st c1st 7993  2nd c2nd 7994  Basecbs 17208  Hom chom 17272  Catccat 17672  Idccid 17673   Func cfunc 17868   ×c cxpc 18187   curryF ccurf 18230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-curf 18234
This theorem is referenced by:  curf1cl  18248  curf2cl  18251  uncfcurf  18259  diag12  18264  yon12  18285
  Copyright terms: Public domain W3C validator