Step | Hyp | Ref
| Expression |
1 | | curfval.g |
. . . 4
⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) |
2 | | curfval.a |
. . . 4
⊢ 𝐴 = (Base‘𝐶) |
3 | | curfval.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
4 | | curfval.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
5 | | curfval.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) |
6 | | curfval.b |
. . . 4
⊢ 𝐵 = (Base‘𝐷) |
7 | | curf1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
8 | | curf1.k |
. . . 4
⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) |
9 | | curf12.j |
. . . 4
⊢ 𝐽 = (Hom ‘𝐷) |
10 | | curf12.1 |
. . . 4
⊢ 1 =
(Id‘𝐶) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | curf1 17943 |
. . 3
⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) |
12 | 6 | fvexi 6788 |
. . . . 5
⊢ 𝐵 ∈ V |
13 | 12 | mptex 7099 |
. . . 4
⊢ (𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)) ∈ V |
14 | 12, 12 | mpoex 7920 |
. . . 4
⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) ∈ V |
15 | 13, 14 | op2ndd 7842 |
. . 3
⊢ (𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉 → (2nd ‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))) |
16 | 11, 15 | syl 17 |
. 2
⊢ (𝜑 → (2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))) |
17 | | curf11.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
18 | | curf12.y |
. . . 4
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
19 | 18 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑦 = 𝑌) → 𝑍 ∈ 𝐵) |
20 | | ovex 7308 |
. . . . 5
⊢ (𝑦𝐽𝑧) ∈ V |
21 | 20 | mptex 7099 |
. . . 4
⊢ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)) ∈ V |
22 | 21 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)) ∈ V) |
23 | | curf12.g |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) |
24 | 23 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → 𝐻 ∈ (𝑌𝐽𝑍)) |
25 | | simprl 768 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → 𝑦 = 𝑌) |
26 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) |
27 | 25, 26 | oveq12d 7293 |
. . . . 5
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → (𝑦𝐽𝑧) = (𝑌𝐽𝑍)) |
28 | 24, 27 | eleqtrrd 2842 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → 𝐻 ∈ (𝑦𝐽𝑧)) |
29 | | ovexd 7310 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔) ∈ V) |
30 | | simplrl 774 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑦 = 𝑌) |
31 | 30 | opeq2d 4811 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 〈𝑋, 𝑦〉 = 〈𝑋, 𝑌〉) |
32 | | simplrr 775 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑧 = 𝑍) |
33 | 32 | opeq2d 4811 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 〈𝑋, 𝑧〉 = 〈𝑋, 𝑍〉) |
34 | 31, 33 | oveq12d 7293 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉) = (〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)) |
35 | | eqidd 2739 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → ( 1 ‘𝑋) = ( 1 ‘𝑋)) |
36 | | simpr 485 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → 𝑔 = 𝐻) |
37 | 34, 35, 36 | oveq123d 7296 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) ∧ 𝑔 = 𝐻) → (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻)) |
38 | 28, 29, 37 | fvmptdv2 6893 |
. . 3
⊢ ((𝜑 ∧ (𝑦 = 𝑌 ∧ 𝑧 = 𝑍)) → ((𝑌(2nd ‘𝐾)𝑍) = (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)) → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻))) |
39 | 17, 19, 22, 38 | ovmpodv 7430 |
. 2
⊢ (𝜑 → ((2nd
‘𝐾) = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔))) → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻))) |
40 | 16, 39 | mpd 15 |
1
⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻)) |