MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2 Structured version   Visualization version   GIF version

Theorem curf2 17479
Description: Value of the curry functor at a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curf2.a 𝐴 = (Base‘𝐶)
curf2.c (𝜑𝐶 ∈ Cat)
curf2.d (𝜑𝐷 ∈ Cat)
curf2.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curf2.b 𝐵 = (Base‘𝐷)
curf2.h 𝐻 = (Hom ‘𝐶)
curf2.i 𝐼 = (Id‘𝐷)
curf2.x (𝜑𝑋𝐴)
curf2.y (𝜑𝑌𝐴)
curf2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
curf2.l 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
Assertion
Ref Expression
curf2 (𝜑𝐿 = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝐻   𝑧,𝐿   𝑧,𝐸   𝑧,𝐺   𝑧,𝐼   𝜑,𝑧   𝑧,𝐵   𝑧,𝐷   𝑧,𝑋   𝑧,𝐾   𝑧,𝑌
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem curf2
Dummy variables 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curf2.l . 2 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
2 curf2.g . . . . 5 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
3 curf2.a . . . . 5 𝐴 = (Base‘𝐶)
4 curf2.c . . . . 5 (𝜑𝐶 ∈ Cat)
5 curf2.d . . . . 5 (𝜑𝐷 ∈ Cat)
6 curf2.f . . . . 5 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
7 curf2.b . . . . 5 𝐵 = (Base‘𝐷)
8 eqid 2821 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
9 eqid 2821 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
10 curf2.h . . . . 5 𝐻 = (Hom ‘𝐶)
11 curf2.i . . . . 5 𝐼 = (Id‘𝐷)
122, 3, 4, 5, 6, 7, 8, 9, 10, 11curfval 17473 . . . 4 (𝜑𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
133fvexi 6684 . . . . . 6 𝐴 ∈ V
1413mptex 6986 . . . . 5 (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) ∈ V
1513, 13mpoex 7777 . . . . 5 (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))) ∈ V
1614, 15op2ndd 7700 . . . 4 (𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩ → (2nd𝐺) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))))
1712, 16syl 17 . . 3 (𝜑 → (2nd𝐺) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))))
18 curf2.x . . . 4 (𝜑𝑋𝐴)
19 curf2.y . . . . 5 (𝜑𝑌𝐴)
2019adantr 483 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑌𝐴)
21 ovex 7189 . . . . . 6 (𝑥𝐻𝑦) ∈ V
2221mptex 6986 . . . . 5 (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))) ∈ V
2322a1i 11 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))) ∈ V)
24 curf2.k . . . . . . 7 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
2524adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝐾 ∈ (𝑋𝐻𝑌))
26 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
27 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
2826, 27oveq12d 7174 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
2925, 28eleqtrrd 2916 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝐾 ∈ (𝑥𝐻𝑦))
307fvexi 6684 . . . . . . 7 𝐵 ∈ V
3130mptex 6986 . . . . . 6 (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))) ∈ V
3231a1i 11 . . . . 5 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))) ∈ V)
33 simplrl 775 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → 𝑥 = 𝑋)
3433opeq1d 4809 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑧⟩)
35 simplrr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → 𝑦 = 𝑌)
3635opeq1d 4809 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → ⟨𝑦, 𝑧⟩ = ⟨𝑌, 𝑧⟩)
3734, 36oveq12d 7174 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → (⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩) = (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩))
38 simpr 487 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → 𝑔 = 𝐾)
39 eqidd 2822 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → (𝐼𝑧) = (𝐼𝑧))
4037, 38, 39oveq123d 7177 . . . . . 6 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)) = (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)))
4140mpteq2dv 5162 . . . . 5 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))) = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
4229, 32, 41fvmptdv2 6786 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑋(2nd𝐺)𝑌) = (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))) → ((𝑋(2nd𝐺)𝑌)‘𝐾) = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)))))
4318, 20, 23, 42ovmpodv 7307 . . 3 (𝜑 → ((2nd𝐺) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))) → ((𝑋(2nd𝐺)𝑌)‘𝐾) = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)))))
4417, 43mpd 15 . 2 (𝜑 → ((𝑋(2nd𝐺)𝑌)‘𝐾) = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
451, 44syl5eq 2868 1 (𝜑𝐿 = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cop 4573  cmpt 5146  cfv 6355  (class class class)co 7156  cmpo 7158  1st c1st 7687  2nd c2nd 7688  Basecbs 16483  Hom chom 16576  Catccat 16935  Idccid 16936   Func cfunc 17124   ×c cxpc 17418   curryF ccurf 17460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-curf 17464
This theorem is referenced by:  curf2val  17480  curf2cl  17481  curfcl  17482  diag2  17495  curf2ndf  17497
  Copyright terms: Public domain W3C validator