MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2 Structured version   Visualization version   GIF version

Theorem curf2 18254
Description: Value of the curry functor at a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curf2.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curf2.a 𝐴 = (Base‘𝐶)
curf2.c (𝜑𝐶 ∈ Cat)
curf2.d (𝜑𝐷 ∈ Cat)
curf2.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curf2.b 𝐵 = (Base‘𝐷)
curf2.h 𝐻 = (Hom ‘𝐶)
curf2.i 𝐼 = (Id‘𝐷)
curf2.x (𝜑𝑋𝐴)
curf2.y (𝜑𝑌𝐴)
curf2.k (𝜑𝐾 ∈ (𝑋𝐻𝑌))
curf2.l 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
Assertion
Ref Expression
curf2 (𝜑𝐿 = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝐻   𝑧,𝐿   𝑧,𝐸   𝑧,𝐺   𝑧,𝐼   𝜑,𝑧   𝑧,𝐵   𝑧,𝐷   𝑧,𝑋   𝑧,𝐾   𝑧,𝑌
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem curf2
Dummy variables 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curf2.l . 2 𝐿 = ((𝑋(2nd𝐺)𝑌)‘𝐾)
2 curf2.g . . . . 5 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
3 curf2.a . . . . 5 𝐴 = (Base‘𝐶)
4 curf2.c . . . . 5 (𝜑𝐶 ∈ Cat)
5 curf2.d . . . . 5 (𝜑𝐷 ∈ Cat)
6 curf2.f . . . . 5 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
7 curf2.b . . . . 5 𝐵 = (Base‘𝐷)
8 eqid 2726 . . . . 5 (Hom ‘𝐷) = (Hom ‘𝐷)
9 eqid 2726 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
10 curf2.h . . . . 5 𝐻 = (Hom ‘𝐶)
11 curf2.i . . . . 5 𝐼 = (Id‘𝐷)
122, 3, 4, 5, 6, 7, 8, 9, 10, 11curfval 18248 . . . 4 (𝜑𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩)
133fvexi 6915 . . . . . 6 𝐴 ∈ V
1413mptex 7240 . . . . 5 (𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) ∈ V
1513, 13mpoex 8093 . . . . 5 (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))) ∈ V
1614, 15op2ndd 8014 . . . 4 (𝐺 = ⟨(𝑥𝐴 ↦ ⟨(𝑦𝐵 ↦ (𝑥(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))))⟩ → (2nd𝐺) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))))
1712, 16syl 17 . . 3 (𝜑 → (2nd𝐺) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))))
18 curf2.x . . . 4 (𝜑𝑋𝐴)
19 curf2.y . . . . 5 (𝜑𝑌𝐴)
2019adantr 479 . . . 4 ((𝜑𝑥 = 𝑋) → 𝑌𝐴)
21 ovex 7457 . . . . . 6 (𝑥𝐻𝑦) ∈ V
2221mptex 7240 . . . . 5 (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))) ∈ V
2322a1i 11 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))) ∈ V)
24 curf2.k . . . . . . 7 (𝜑𝐾 ∈ (𝑋𝐻𝑌))
2524adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝐾 ∈ (𝑋𝐻𝑌))
26 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
27 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
2826, 27oveq12d 7442 . . . . . 6 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝐻𝑦) = (𝑋𝐻𝑌))
2925, 28eleqtrrd 2829 . . . . 5 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝐾 ∈ (𝑥𝐻𝑦))
307fvexi 6915 . . . . . . 7 𝐵 ∈ V
3130mptex 7240 . . . . . 6 (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))) ∈ V
3231a1i 11 . . . . 5 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))) ∈ V)
33 simplrl 775 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → 𝑥 = 𝑋)
3433opeq1d 4885 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑧⟩)
35 simplrr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → 𝑦 = 𝑌)
3635opeq1d 4885 . . . . . . . 8 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → ⟨𝑦, 𝑧⟩ = ⟨𝑌, 𝑧⟩)
3734, 36oveq12d 7442 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → (⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩) = (⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩))
38 simpr 483 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → 𝑔 = 𝐾)
39 eqidd 2727 . . . . . . 7 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → (𝐼𝑧) = (𝐼𝑧))
4037, 38, 39oveq123d 7445 . . . . . 6 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)) = (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)))
4140mpteq2dv 5255 . . . . 5 (((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) ∧ 𝑔 = 𝐾) → (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))) = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
4229, 32, 41fvmptdv2 7027 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑋(2nd𝐺)𝑌) = (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧)))) → ((𝑋(2nd𝐺)𝑌)‘𝐾) = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)))))
4318, 20, 23, 42ovmpodv 7583 . . 3 (𝜑 → ((2nd𝐺) = (𝑥𝐴, 𝑦𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧𝐵 ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)(𝐼𝑧))))) → ((𝑋(2nd𝐺)𝑌)‘𝐾) = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧)))))
4417, 43mpd 15 . 2 (𝜑 → ((𝑋(2nd𝐺)𝑌)‘𝐾) = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
451, 44eqtrid 2778 1 (𝜑𝐿 = (𝑧𝐵 ↦ (𝐾(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑌, 𝑧⟩)(𝐼𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cop 4639  cmpt 5236  cfv 6554  (class class class)co 7424  cmpo 7426  1st c1st 8001  2nd c2nd 8002  Basecbs 17213  Hom chom 17277  Catccat 17677  Idccid 17678   Func cfunc 17873   ×c cxpc 18192   curryF ccurf 18235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-curf 18239
This theorem is referenced by:  curf2val  18255  curf2cl  18256  curfcl  18257  diag2  18270  curf2ndf  18272
  Copyright terms: Public domain W3C validator