MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco4i Structured version   Visualization version   GIF version

Theorem fvco4i 6923
Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
fvco4i.a ∅ = (𝐹‘∅)
fvco4i.b Fun 𝐺
Assertion
Ref Expression
fvco4i ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋))

Proof of Theorem fvco4i
StepHypRef Expression
1 fvco4i.b . . . 4 Fun 𝐺
2 funfn 6511 . . . 4 (Fun 𝐺𝐺 Fn dom 𝐺)
31, 2mpbi 230 . . 3 𝐺 Fn dom 𝐺
4 fvco2 6919 . . 3 ((𝐺 Fn dom 𝐺𝑋 ∈ dom 𝐺) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
53, 4mpan 690 . 2 (𝑋 ∈ dom 𝐺 → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
6 fvco4i.a . . 3 ∅ = (𝐹‘∅)
7 dmcoss 5913 . . . . 5 dom (𝐹𝐺) ⊆ dom 𝐺
87sseli 3925 . . . 4 (𝑋 ∈ dom (𝐹𝐺) → 𝑋 ∈ dom 𝐺)
9 ndmfv 6854 . . . 4 𝑋 ∈ dom (𝐹𝐺) → ((𝐹𝐺)‘𝑋) = ∅)
108, 9nsyl5 159 . . 3 𝑋 ∈ dom 𝐺 → ((𝐹𝐺)‘𝑋) = ∅)
11 ndmfv 6854 . . . 4 𝑋 ∈ dom 𝐺 → (𝐺𝑋) = ∅)
1211fveq2d 6826 . . 3 𝑋 ∈ dom 𝐺 → (𝐹‘(𝐺𝑋)) = (𝐹‘∅))
136, 10, 123eqtr4a 2792 . 2 𝑋 ∈ dom 𝐺 → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
145, 13pm2.61i 182 1 ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  c0 4280  dom cdm 5614  ccom 5618  Fun wfun 6475   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  lidlval  21147  rspval  21148
  Copyright terms: Public domain W3C validator