![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvco4i | Structured version Visualization version GIF version |
Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
fvco4i.a | ⊢ ∅ = (𝐹‘∅) |
fvco4i.b | ⊢ Fun 𝐺 |
Ref | Expression |
---|---|
fvco4i | ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco4i.b | . . . 4 ⊢ Fun 𝐺 | |
2 | funfn 6578 | . . . 4 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
3 | 1, 2 | mpbi 229 | . . 3 ⊢ 𝐺 Fn dom 𝐺 |
4 | fvco2 6988 | . . 3 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝑋 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) | |
5 | 3, 4 | mpan 688 | . 2 ⊢ (𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
6 | fvco4i.a | . . 3 ⊢ ∅ = (𝐹‘∅) | |
7 | dmcoss 5970 | . . . . 5 ⊢ dom (𝐹 ∘ 𝐺) ⊆ dom 𝐺 | |
8 | 7 | sseli 3978 | . . . 4 ⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → 𝑋 ∈ dom 𝐺) |
9 | ndmfv 6926 | . . . 4 ⊢ (¬ 𝑋 ∈ dom (𝐹 ∘ 𝐺) → ((𝐹 ∘ 𝐺)‘𝑋) = ∅) | |
10 | 8, 9 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = ∅) |
11 | ndmfv 6926 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐺‘𝑋) = ∅) | |
12 | 11 | fveq2d 6895 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐹‘(𝐺‘𝑋)) = (𝐹‘∅)) |
13 | 6, 10, 12 | 3eqtr4a 2798 | . 2 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
14 | 5, 13 | pm2.61i 182 | 1 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 ∅c0 4322 dom cdm 5676 ∘ ccom 5680 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 |
This theorem is referenced by: lidlval 20813 rspval 20814 |
Copyright terms: Public domain | W3C validator |