Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvco4i | Structured version Visualization version GIF version |
Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
fvco4i.a | ⊢ ∅ = (𝐹‘∅) |
fvco4i.b | ⊢ Fun 𝐺 |
Ref | Expression |
---|---|
fvco4i | ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco4i.b | . . . 4 ⊢ Fun 𝐺 | |
2 | funfn 6464 | . . . 4 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
3 | 1, 2 | mpbi 229 | . . 3 ⊢ 𝐺 Fn dom 𝐺 |
4 | fvco2 6865 | . . 3 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝑋 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) | |
5 | 3, 4 | mpan 687 | . 2 ⊢ (𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
6 | fvco4i.a | . . 3 ⊢ ∅ = (𝐹‘∅) | |
7 | dmcoss 5880 | . . . . 5 ⊢ dom (𝐹 ∘ 𝐺) ⊆ dom 𝐺 | |
8 | 7 | sseli 3917 | . . . 4 ⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → 𝑋 ∈ dom 𝐺) |
9 | ndmfv 6804 | . . . 4 ⊢ (¬ 𝑋 ∈ dom (𝐹 ∘ 𝐺) → ((𝐹 ∘ 𝐺)‘𝑋) = ∅) | |
10 | 8, 9 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = ∅) |
11 | ndmfv 6804 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐺‘𝑋) = ∅) | |
12 | 11 | fveq2d 6778 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐹‘(𝐺‘𝑋)) = (𝐹‘∅)) |
13 | 6, 10, 12 | 3eqtr4a 2804 | . 2 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
14 | 5, 13 | pm2.61i 182 | 1 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 ∅c0 4256 dom cdm 5589 ∘ ccom 5593 Fun wfun 6427 Fn wfn 6428 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: lidlval 20462 rspval 20463 |
Copyright terms: Public domain | W3C validator |