Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvco4i | Structured version Visualization version GIF version |
Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
Ref | Expression |
---|---|
fvco4i.a | ⊢ ∅ = (𝐹‘∅) |
fvco4i.b | ⊢ Fun 𝐺 |
Ref | Expression |
---|---|
fvco4i | ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvco4i.b | . . . 4 ⊢ Fun 𝐺 | |
2 | funfn 6448 | . . . 4 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
3 | 1, 2 | mpbi 229 | . . 3 ⊢ 𝐺 Fn dom 𝐺 |
4 | fvco2 6847 | . . 3 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝑋 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) | |
5 | 3, 4 | mpan 686 | . 2 ⊢ (𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
6 | fvco4i.a | . . 3 ⊢ ∅ = (𝐹‘∅) | |
7 | dmcoss 5869 | . . . . 5 ⊢ dom (𝐹 ∘ 𝐺) ⊆ dom 𝐺 | |
8 | 7 | sseli 3913 | . . . 4 ⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → 𝑋 ∈ dom 𝐺) |
9 | ndmfv 6786 | . . . 4 ⊢ (¬ 𝑋 ∈ dom (𝐹 ∘ 𝐺) → ((𝐹 ∘ 𝐺)‘𝑋) = ∅) | |
10 | 8, 9 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = ∅) |
11 | ndmfv 6786 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐺‘𝑋) = ∅) | |
12 | 11 | fveq2d 6760 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐹‘(𝐺‘𝑋)) = (𝐹‘∅)) |
13 | 6, 10, 12 | 3eqtr4a 2805 | . 2 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
14 | 5, 13 | pm2.61i 182 | 1 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 ∅c0 4253 dom cdm 5580 ∘ ccom 5584 Fun wfun 6412 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 |
This theorem is referenced by: lidlval 20375 rspval 20376 |
Copyright terms: Public domain | W3C validator |