MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvco4i Structured version   Visualization version   GIF version

Theorem fvco4i 6944
Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
fvco4i.a ∅ = (𝐹‘∅)
fvco4i.b Fun 𝐺
Assertion
Ref Expression
fvco4i ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋))

Proof of Theorem fvco4i
StepHypRef Expression
1 fvco4i.b . . . 4 Fun 𝐺
2 funfn 6530 . . . 4 (Fun 𝐺𝐺 Fn dom 𝐺)
31, 2mpbi 230 . . 3 𝐺 Fn dom 𝐺
4 fvco2 6940 . . 3 ((𝐺 Fn dom 𝐺𝑋 ∈ dom 𝐺) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
53, 4mpan 690 . 2 (𝑋 ∈ dom 𝐺 → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
6 fvco4i.a . . 3 ∅ = (𝐹‘∅)
7 dmcoss 5927 . . . . 5 dom (𝐹𝐺) ⊆ dom 𝐺
87sseli 3939 . . . 4 (𝑋 ∈ dom (𝐹𝐺) → 𝑋 ∈ dom 𝐺)
9 ndmfv 6875 . . . 4 𝑋 ∈ dom (𝐹𝐺) → ((𝐹𝐺)‘𝑋) = ∅)
108, 9nsyl5 159 . . 3 𝑋 ∈ dom 𝐺 → ((𝐹𝐺)‘𝑋) = ∅)
11 ndmfv 6875 . . . 4 𝑋 ∈ dom 𝐺 → (𝐺𝑋) = ∅)
1211fveq2d 6844 . . 3 𝑋 ∈ dom 𝐺 → (𝐹‘(𝐺𝑋)) = (𝐹‘∅))
136, 10, 123eqtr4a 2790 . 2 𝑋 ∈ dom 𝐺 → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
145, 13pm2.61i 182 1 ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  c0 4292  dom cdm 5631  ccom 5635  Fun wfun 6493   Fn wfn 6494  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507
This theorem is referenced by:  lidlval  21152  rspval  21153
  Copyright terms: Public domain W3C validator