| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvco4i | Structured version Visualization version GIF version | ||
| Description: Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| fvco4i.a | ⊢ ∅ = (𝐹‘∅) |
| fvco4i.b | ⊢ Fun 𝐺 |
| Ref | Expression |
|---|---|
| fvco4i | ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco4i.b | . . . 4 ⊢ Fun 𝐺 | |
| 2 | funfn 6511 | . . . 4 ⊢ (Fun 𝐺 ↔ 𝐺 Fn dom 𝐺) | |
| 3 | 1, 2 | mpbi 230 | . . 3 ⊢ 𝐺 Fn dom 𝐺 |
| 4 | fvco2 6919 | . . 3 ⊢ ((𝐺 Fn dom 𝐺 ∧ 𝑋 ∈ dom 𝐺) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| 6 | fvco4i.a | . . 3 ⊢ ∅ = (𝐹‘∅) | |
| 7 | dmcoss 5913 | . . . . 5 ⊢ dom (𝐹 ∘ 𝐺) ⊆ dom 𝐺 | |
| 8 | 7 | sseli 3925 | . . . 4 ⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) → 𝑋 ∈ dom 𝐺) |
| 9 | ndmfv 6854 | . . . 4 ⊢ (¬ 𝑋 ∈ dom (𝐹 ∘ 𝐺) → ((𝐹 ∘ 𝐺)‘𝑋) = ∅) | |
| 10 | 8, 9 | nsyl5 159 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = ∅) |
| 11 | ndmfv 6854 | . . . 4 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐺‘𝑋) = ∅) | |
| 12 | 11 | fveq2d 6826 | . . 3 ⊢ (¬ 𝑋 ∈ dom 𝐺 → (𝐹‘(𝐺‘𝑋)) = (𝐹‘∅)) |
| 13 | 6, 10, 12 | 3eqtr4a 2792 | . 2 ⊢ (¬ 𝑋 ∈ dom 𝐺 → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| 14 | 5, 13 | pm2.61i 182 | 1 ⊢ ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ∅c0 4280 dom cdm 5614 ∘ ccom 5618 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: lidlval 21147 rspval 21148 |
| Copyright terms: Public domain | W3C validator |