MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp1 Structured version   Visualization version   GIF version

Theorem fvtp1 7172
Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
fvtp1.1 𝐴 ∈ V
fvtp1.4 𝐷 ∈ V
Assertion
Ref Expression
fvtp1 ((𝐴𝐵𝐴𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)

Proof of Theorem fvtp1
StepHypRef Expression
1 df-tp 4597 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})
21fveq1i 6862 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴)
3 necom 2979 . . . 4 (𝐴𝐶𝐶𝐴)
4 fvunsn 7156 . . . 4 (𝐶𝐴 → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴))
53, 4sylbi 217 . . 3 (𝐴𝐶 → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴))
6 fvtp1.1 . . . 4 𝐴 ∈ V
7 fvtp1.4 . . . 4 𝐷 ∈ V
86, 7fvpr1 7169 . . 3 (𝐴𝐵 → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴) = 𝐷)
95, 8sylan9eqr 2787 . 2 ((𝐴𝐵𝐴𝐶) → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = 𝐷)
102, 9eqtrid 2777 1 ((𝐴𝐵𝐴𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cun 3915  {csn 4592  {cpr 4594  {ctp 4596  cop 4598  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522
This theorem is referenced by:  fvtp2  7173  fntpb  7186  rabren3dioph  42810  nnsum4primesodd  47801  nnsum4primesoddALTV  47802
  Copyright terms: Public domain W3C validator