MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvtp1 Structured version   Visualization version   GIF version

Theorem fvtp1 7120
Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
fvtp1.1 𝐴 ∈ V
fvtp1.4 𝐷 ∈ V
Assertion
Ref Expression
fvtp1 ((𝐴𝐵𝐴𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)

Proof of Theorem fvtp1
StepHypRef Expression
1 df-tp 4577 . . 3 {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})
21fveq1i 6820 . 2 ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴)
3 necom 2994 . . . 4 (𝐴𝐶𝐶𝐴)
4 fvunsn 7101 . . . 4 (𝐶𝐴 → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴))
53, 4sylbi 216 . . 3 (𝐴𝐶 → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴))
6 fvtp1.1 . . . 4 𝐴 ∈ V
7 fvtp1.4 . . . 4 𝐷 ∈ V
86, 7fvpr1 7115 . . 3 (𝐴𝐵 → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴) = 𝐷)
95, 8sylan9eqr 2798 . 2 ((𝐴𝐵𝐴𝐶) → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = 𝐷)
102, 9eqtrid 2788 1 ((𝐴𝐵𝐴𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  Vcvv 3441  cun 3895  {csn 4572  {cpr 4574  {ctp 4576  cop 4578  cfv 6473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-uni 4852  df-br 5090  df-opab 5152  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-res 5626  df-iota 6425  df-fun 6475  df-fv 6481
This theorem is referenced by:  fvtp2  7121  fntpb  7135  rabren3dioph  40887  nnsum4primesodd  45588  nnsum4primesoddALTV  45589
  Copyright terms: Public domain W3C validator