![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvtp1 | Structured version Visualization version GIF version |
Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
fvtp1.1 | ⊢ 𝐴 ∈ V |
fvtp1.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
fvtp1 | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4626 | . . 3 ⊢ {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩}) | |
2 | 1 | fveq1i 6883 | . 2 ⊢ ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) |
3 | necom 2986 | . . . 4 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) | |
4 | fvunsn 7170 | . . . 4 ⊢ (𝐶 ≠ 𝐴 → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴)) | |
5 | 3, 4 | sylbi 216 | . . 3 ⊢ (𝐴 ≠ 𝐶 → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴)) |
6 | fvtp1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
7 | fvtp1.4 | . . . 4 ⊢ 𝐷 ∈ V | |
8 | 6, 7 | fvpr1 7184 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴) = 𝐷) |
9 | 5, 8 | sylan9eqr 2786 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = 𝐷) |
10 | 2, 9 | eqtrid 2776 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 Vcvv 3466 ∪ cun 3939 {csn 4621 {cpr 4623 {ctp 4625 ⟨cop 4627 ‘cfv 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-res 5679 df-iota 6486 df-fun 6536 df-fv 6542 |
This theorem is referenced by: fvtp2 7190 fntpb 7203 rabren3dioph 42103 nnsum4primesodd 47009 nnsum4primesoddALTV 47010 |
Copyright terms: Public domain | W3C validator |