| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvtp1 | Structured version Visualization version GIF version | ||
| Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| fvtp1.1 | ⊢ 𝐴 ∈ V |
| fvtp1.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| fvtp1 | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 4576 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉}) | |
| 2 | 1 | fveq1i 6818 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) |
| 3 | necom 2981 | . . . 4 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) | |
| 4 | fvunsn 7108 | . . . 4 ⊢ (𝐶 ≠ 𝐴 → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) | |
| 5 | 3, 4 | sylbi 217 | . . 3 ⊢ (𝐴 ≠ 𝐶 → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) |
| 6 | fvtp1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 7 | fvtp1.4 | . . . 4 ⊢ 𝐷 ∈ V | |
| 8 | 6, 7 | fvpr1 7121 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) |
| 9 | 5, 8 | sylan9eqr 2788 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = 𝐷) |
| 10 | 2, 9 | eqtrid 2778 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∪ cun 3895 {csn 4571 {cpr 4573 {ctp 4575 〈cop 4577 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-res 5623 df-iota 6432 df-fun 6478 df-fv 6484 |
| This theorem is referenced by: fvtp2 7125 fntpb 7138 rabren3dioph 42848 nnsum4primesodd 47827 nnsum4primesoddALTV 47828 |
| Copyright terms: Public domain | W3C validator |