![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvtp1 | Structured version Visualization version GIF version |
Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
fvtp1.1 | ⊢ 𝐴 ∈ V |
fvtp1.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
fvtp1 | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4629 | . . 3 ⊢ {⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩} = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩}) | |
2 | 1 | fveq1i 6892 | . 2 ⊢ ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) |
3 | necom 2990 | . . . 4 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) | |
4 | fvunsn 7182 | . . . 4 ⊢ (𝐶 ≠ 𝐴 → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴)) | |
5 | 3, 4 | sylbi 216 | . . 3 ⊢ (𝐴 ≠ 𝐶 → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴)) |
6 | fvtp1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
7 | fvtp1.4 | . . . 4 ⊢ 𝐷 ∈ V | |
8 | 6, 7 | fvpr1 7196 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩}‘𝐴) = 𝐷) |
9 | 5, 8 | sylan9eqr 2790 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → (({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩} ∪ {⟨𝐶, 𝐹⟩})‘𝐴) = 𝐷) |
10 | 2, 9 | eqtrid 2780 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({⟨𝐴, 𝐷⟩, ⟨𝐵, 𝐸⟩, ⟨𝐶, 𝐹⟩}‘𝐴) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 Vcvv 3470 ∪ cun 3943 {csn 4624 {cpr 4626 {ctp 4628 ⟨cop 4630 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 |
This theorem is referenced by: fvtp2 7202 fntpb 7215 rabren3dioph 42229 nnsum4primesodd 47130 nnsum4primesoddALTV 47131 |
Copyright terms: Public domain | W3C validator |