Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvtp1 | Structured version Visualization version GIF version |
Description: The first value of a function with a domain of three elements. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
fvtp1.1 | ⊢ 𝐴 ∈ V |
fvtp1.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
fvtp1 | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 4577 | . . 3 ⊢ {〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉} = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉}) | |
2 | 1 | fveq1i 6820 | . 2 ⊢ ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) |
3 | necom 2994 | . . . 4 ⊢ (𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴) | |
4 | fvunsn 7101 | . . . 4 ⊢ (𝐶 ≠ 𝐴 → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) | |
5 | 3, 4 | sylbi 216 | . . 3 ⊢ (𝐴 ≠ 𝐶 → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴)) |
6 | fvtp1.1 | . . . 4 ⊢ 𝐴 ∈ V | |
7 | fvtp1.4 | . . . 4 ⊢ 𝐷 ∈ V | |
8 | 6, 7 | fvpr1 7115 | . . 3 ⊢ (𝐴 ≠ 𝐵 → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉}‘𝐴) = 𝐷) |
9 | 5, 8 | sylan9eqr 2798 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → (({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉} ∪ {〈𝐶, 𝐹〉})‘𝐴) = 𝐷) |
10 | 2, 9 | eqtrid 2788 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ({〈𝐴, 𝐷〉, 〈𝐵, 𝐸〉, 〈𝐶, 𝐹〉}‘𝐴) = 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ∪ cun 3895 {csn 4572 {cpr 4574 {ctp 4576 〈cop 4578 ‘cfv 6473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6425 df-fun 6475 df-fv 6481 |
This theorem is referenced by: fvtp2 7121 fntpb 7135 rabren3dioph 40887 nnsum4primesodd 45588 nnsum4primesoddALTV 45589 |
Copyright terms: Public domain | W3C validator |