HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h1deoi Structured version   Visualization version   GIF version

Theorem h1deoi 31527
Description: Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001.) (New usage is discouraged.)
Hypothesis
Ref Expression
h1deot.1 𝐵 ∈ ℋ
Assertion
Ref Expression
h1deoi (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem h1deoi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 h1deot.1 . . 3 𝐵 ∈ ℋ
2 snssi 4760 . . 3 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
3 ocel 31259 . . 3 ({𝐵} ⊆ ℋ → (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0)))
41, 2, 3mp2b 10 . 2 (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0))
51elexi 3459 . . . 4 𝐵 ∈ V
6 oveq2 7354 . . . . 5 (𝑥 = 𝐵 → (𝐴 ·ih 𝑥) = (𝐴 ·ih 𝐵))
76eqeq1d 2733 . . . 4 (𝑥 = 𝐵 → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐵) = 0))
85, 7ralsn 4634 . . 3 (∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐵) = 0)
98anbi2i 623 . 2 ((𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0))
104, 9bitri 275 1 (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3902  {csn 4576  cfv 6481  (class class class)co 7346  0cc0 11006  chba 30897   ·ih csp 30900  cort 30908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-hilex 30977
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oc 31230
This theorem is referenced by:  h1dei  31528
  Copyright terms: Public domain W3C validator