| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > h1deoi | Structured version Visualization version GIF version | ||
| Description: Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| h1deot.1 | ⊢ 𝐵 ∈ ℋ |
| Ref | Expression |
|---|---|
| h1deoi | ⊢ (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | h1deot.1 | . . 3 ⊢ 𝐵 ∈ ℋ | |
| 2 | snssi 4775 | . . 3 ⊢ (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ) | |
| 3 | ocel 31217 | . . 3 ⊢ ({𝐵} ⊆ ℋ → (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0))) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0)) |
| 5 | 1 | elexi 3473 | . . . 4 ⊢ 𝐵 ∈ V |
| 6 | oveq2 7398 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ·ih 𝑥) = (𝐴 ·ih 𝐵)) | |
| 7 | 6 | eqeq1d 2732 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐵) = 0)) |
| 8 | 5, 7 | ralsn 4648 | . . 3 ⊢ (∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐵) = 0) |
| 9 | 8 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0)) |
| 10 | 4, 9 | bitri 275 | 1 ⊢ (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 {csn 4592 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℋchba 30855 ·ih csp 30858 ⊥cort 30866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oc 31188 |
| This theorem is referenced by: h1dei 31486 |
| Copyright terms: Public domain | W3C validator |