Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h1deoi | Structured version Visualization version GIF version |
Description: Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h1deot.1 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
h1deoi | ⊢ (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h1deot.1 | . . 3 ⊢ 𝐵 ∈ ℋ | |
2 | snssi 4741 | . . 3 ⊢ (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ) | |
3 | ocel 29643 | . . 3 ⊢ ({𝐵} ⊆ ℋ → (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0)) |
5 | 1 | elexi 3451 | . . . 4 ⊢ 𝐵 ∈ V |
6 | oveq2 7283 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ·ih 𝑥) = (𝐴 ·ih 𝐵)) | |
7 | 6 | eqeq1d 2740 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐵) = 0)) |
8 | 5, 7 | ralsn 4617 | . . 3 ⊢ (∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐵) = 0) |
9 | 8 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0)) |
10 | 4, 9 | bitri 274 | 1 ⊢ (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 {csn 4561 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℋchba 29281 ·ih csp 29284 ⊥cort 29292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oc 29614 |
This theorem is referenced by: h1dei 29912 |
Copyright terms: Public domain | W3C validator |