Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h1deoi | Structured version Visualization version GIF version |
Description: Membership in orthocomplement of 1-dimensional subspace. (Contributed by NM, 7-Jul-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h1deot.1 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
h1deoi | ⊢ (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h1deot.1 | . . 3 ⊢ 𝐵 ∈ ℋ | |
2 | snssi 4738 | . . 3 ⊢ (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ) | |
3 | ocel 29544 | . . 3 ⊢ ({𝐵} ⊆ ℋ → (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0))) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0)) |
5 | 1 | elexi 3441 | . . . 4 ⊢ 𝐵 ∈ V |
6 | oveq2 7263 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ·ih 𝑥) = (𝐴 ·ih 𝐵)) | |
7 | 6 | eqeq1d 2740 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐵) = 0)) |
8 | 5, 7 | ralsn 4614 | . . 3 ⊢ (∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0 ↔ (𝐴 ·ih 𝐵) = 0) |
9 | 8 | anbi2i 622 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ ∀𝑥 ∈ {𝐵} (𝐴 ·ih 𝑥) = 0) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0)) |
10 | 4, 9 | bitri 274 | 1 ⊢ (𝐴 ∈ (⊥‘{𝐵}) ↔ (𝐴 ∈ ℋ ∧ (𝐴 ·ih 𝐵) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 {csn 4558 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℋchba 29182 ·ih csp 29185 ⊥cort 29193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-hilex 29262 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oc 29515 |
This theorem is referenced by: h1dei 29813 |
Copyright terms: Public domain | W3C validator |